Answer:
Step-by-step explanation:
A
Answer:
Yes
Step-by-step explanation:
You can conclude that ΔGHI is congruent to ΔKJI, because you can see/interpret that there all the angles are congruent with one another, like with vertical angles (∠GIH and ∠KIJ) and alternate interior angles (∠H and ∠J, ∠G and ∠K).
We also know that we have two congruent sides, since it provides the information that line GK bisects line HJ, meaning that they have been split evenly (they have been split, with even/same lengths).
<u><em>So now we have three congruent angles, and two congruent sides. This is enough to prove that ΔGHI is congruent to ΔKJI,</em></u>
<u><em /></u>
Answer:
I don't see an O in the picture at all.
but here's how you solve it: just count the nodes between the species, the fewer the closer
I would go for E and I, only one step between them
Answer:
i dont see a picture
Step-by-step explanation: