Answer:
The following are the solution to the given points:
Step-by-step explanation:
for point A:


The set A is not part of the subspace 
for point B:


The set B is part of the subspace
for point C:

In this, the scalar multiplication can't behold

∉ C
this inequality is not hold
The set C is not a part of the subspace
for point D:

The scalar multiplication s is not to hold
∉ D
this is an inequality, which is not hold
The set D is not part of the subspace 
For point E:

The
is the arbitrary, in which
is arbitrary

The set E is the part of the subspace
For point F:

The
arbitrary so, they have
as the arbitrary 
The set F is the subspace of 
So make a square and then you an answer from (0,1) to (4,3) the slope is 1/2 in simplest form, but for a more accurate answer a calculator.
Answer:
Option c is right.
Step-by-step explanation:
Given is a parabola y =x^2
From that transformation is done to get parabola as
y =(0.2x)^2
We find that instead of x here we use 0.2x
i.e. New x = 5 times old x
Hence there is a horizontal expansion of scale factor 5.
We can check with any point also
When y =4, x=2 in the parent graph
But when y =4 , we have x = 10 in the new graph
i.e. there is a horizontal expansion of scale factor 5.
Let i = sqrt(-1) which is the conventional notation to set up an imaginary number
The idea is to break up the radicand, aka stuff under the square root, to simplify
sqrt(-8) = sqrt(-1*4*2)
sqrt(-8) = sqrt(-1)*sqrt(4)*sqrt(2)
sqrt(-8) = i*2*sqrt(2)
sqrt(-8) = 2i*sqrt(2)
<h3>Answer is choice A</h3>