Answer: ![sds\\ \\ x^{2} \geq \int\limits^a_b {x} \, dx \lim_{n \to \infty} a_n \geq \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \pi \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \lim_{n \to \infty} a_n \int\limits^a_b {x} \, dx \left \{ {{y=2} \atop {x=2}} \right. x^{2} \lim_{n \to \infty} a_n \pi \neq \sqrt{x} \neq](https://tex.z-dn.net/?f=sds%5C%5C%20%5C%5C%20x%5E%7B2%7D%20%5Cgeq%20%5Cint%5Climits%5Ea_b%20%7Bx%7D%20%5C%2C%20dx%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20a_n%20%5Cgeq%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%263%5C%5C4%265%266%5C%5C7%268%269%5Cend%7Barray%7D%5Cright%5D%20%5Cpi%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%263%5C%5C4%265%266%5C%5C7%268%269%5Cend%7Barray%7D%5Cright%5D%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20a_n%20%5Cint%5Climits%5Ea_b%20%7Bx%7D%20%5C%2C%20dx%20%5Cleft%20%5C%7B%20%7B%7By%3D2%7D%20%5Catop%20%7Bx%3D2%7D%7D%20%5Cright.%20x%5E%7B2%7D%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20a_n%20%5Cpi%20%5Cneq%20%5Csqrt%7Bx%7D%20%5Cneq)
Step-by-step explanation:i need the think points
Answer:

Step-by-step explanation:
We are given:

Separation of Variables:

So:

Integrate:

Integrate:

Raise both sides to e:

Simplify:

So:

Simplify:

Answer:
Solution given:
The volume of two similar solids are 128 m³
and 250 m³.
surface area of larger solid is 250m²
<u>let</u><u> </u><u>surface</u><u> </u><u>area</u><u> </u><u>of</u><u> </u><u>smaller</u><u> </u><u>solid</u><u> </u><u>be</u><u> </u><u>x</u><u>.</u>
<u>Since</u><u> </u><u>they</u><u> </u><u>are</u><u> </u><u>similar</u>

x=128
the surface are of the
smaller solid is 128m²
Answer:
x = 34
Step-by-step explanation:
-8 = dropped 8 degrees
26 = 26 degrees at midnight
x = temperature at 6
x - 8 = 26
(add 8 to both sides) x = 34
Answer:
the line modeling the baking powder and the flour used
Step-by-step explanation:
plato master test