The correct answer is C !
Por lo que, el valor absoluto de -9 es 9. El valor absoluto de 9 es el número de unidades que está 9 del cero. Nueve está a nueve unidades de cero.
Answer:
X = 89.92° or 90.08°
Step-by-step explanation:
The law of sines can be used to find the value of angle X:
sin(X)/26 = sin(67.38°)/24
sin(X) = (26/24)sin(67.38°) ≈ 0.99999901787
There are two values of X that have this sine:
X = arcsin(0.99999901787) ≈ 89.92°
X = 180° -arcsin(0.99999901787) ≈ 90.08°
There are two solutions: X = 89.92° or 90.08°.
_____
<em>Comment on the problem</em>
We suspect that the angle is supposed to be considered to be 90°. However, the given angle is reported to 2 decimal places, so we figure the requested angle should also be reported to 2 decimal places.
The lengths of the short side that correspond to the above angles are 10.03 and 9.97 units. If the short side were considered to be 10 units, the triangle would be a right triangle, and the larger acute angle would be ...
arcsin(24/26) ≈ 67.38014° . . . . rounds to 67.38°
This points up the difficulty of trying to use the Law of Sines on a triangle that is actually a right triangle.
Answer:
See below
Step-by-step explanation:
Use 5 for "x" or "a number" and see if the inequality is true.
a) =3 < 5+11 < 2 . . . . false. 16 is not less than 2
b) 7·5 ≥ 35 or 4·5 < -12 . . . . true. 35 = 35
c) -7 + 2·5 = 3 is at most 2 . . . . false. 3 > 2
d) 5·5 +3 = 28 is between 2 and 30 . . . . true.
Answer:
see explanation
Step-by-step explanation:
Parallel lines have equal slopes.
The equation of a line in slope- intercept form is
y = mx + c ( m is the slope and c the y- intercept )
L₁ is y = 5x + 1 ← in slope- intercept form
with slope m = 5
L₂ is 2y - 10x + 3 = 0 ( subtract - 10x + 3 from both sides )
2y = 10x - 3 ( divide all terms by 2 )
y = 5x -
← in slope- intercept form
with slope m = 5
Since L₁ and L₂ have equal slopes then they are parallel lines