1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andrezito [222]
3 years ago
13

Q6: What the differences between CV and CC welding machine?

Engineering
1 answer:
zhenek [66]3 years ago
6 0

Answer:

A CC power source will maintain current at a relatively constant level, while a CV power source will maintain voltage at a relatively constant level.

Explanation:

A CC power source will maintain current at a relatively constant level, regardless of fairly large changes in voltage, while a CV power source will maintain voltage at a relatively constant level, regardless of fairly large changes in current.

You might be interested in
What is hardness and how is it generally tested?
drek231 [11]

Answer:

Hardness is understood as the property of materials in general to resist the penetration of an indenter under load, so that the hardness represents the resistance of the material to the plastic deformation located on its surface.

Explanation:

Hardness of a material is understood as the resistance that the material opposes to its permanent surface plastic deformation by scratching or penetration. It is always true that the hardness of a material is inversely proportional to the footprint that remains on its surface when a force is applied.

In this sense, the hardness of a material can also be defined as that property of the surface layer of the material to resist any elastic deformation, plastic or destruction due to the action of local contact forces caused by another body (called indenter or penetrator), harder, of certain shape and dimensions, which does not suffer residual deformations during contact.

That is, hardness is understood as the property of materials in general to resist the penetration of an indenter under load, so that the hardness represents the resistance of the material to the plastic deformation located on its surface.

The following conclusions can be drawn from the previous definition of hardness:  

  1) hardness, by definition, is a property of the surface layer of the material, and is not a property of the material itself;  

  2) the methods of hardness by indentation presuppose the presence of contact efforts, and therefore, the hardness can be quantified within a scale;

  3) In any case, the indenter or penetrator must not undergo residual deformations during the test of hardness measurement of the body being tested.

To determine the hardness of the materials, durometers with different types of tips and ranges of loads are used on the various materials. Below are the most commonly used tests to determine the hardness of the materials.

   Rockwell hardness :

It refers to the Rockwell hardness test, a method with which the hardness or resistance of a material to be penetrated is calculated. It is characterized by being a fast and simple method that can be applied to all types of materials. An optical reader is not required.

    Brinell hardness :

Brinell hardness is a scale that is used to determine the hardness of a material through the indentation method, which consists of penetrating with a hardened steel ball tip into the hard material, a load and for a certain time.  

This test is not very precise but easy to apply. It is one of the oldest and was proposed in 1900 by Johan August Brinell, a Swedish engineer.

    Vickers hardness:

Vickers hardness is a test that is used in all types of solid and thin or soft materials. In this test, a square-shaped pyramid-shaped diamond and a   136° vertex angle are placed on the penetrating equipment.

In this test the hardness measurement is performed by calculating the diagonal penetration lengths.

However, its result is not read directly on the equipment used, therefore, the following formula must be applied to determine the hardness of the material: HV = 1.8544 · F / (dv2).

3 0
3 years ago
N DevOps, high levels of automation are expected, which increases productivity. Which fact illustrates this productivity increas
Bess [88]

Answer:

Less intervention of humans.

Explanation:

This fact illustrate that less intervention of human in the production is the main cause for increase in productivity because use of machinery completed the work in less time as compared to the use of human labour. In many industries, machines takes the place of humans which increases the production of products but at the same time, increase the unemployment rate in the society. Making the whole industry on automation can increase the productivity of products in less time.

3 0
3 years ago
Responding to the campaign of 4 classes, 7A, 7B, 7C, 7D contributed the amount of support proportional to the numbers 8,6;7;5 kn
Zolol [24]

Writing life on my fantasy planet

8 0
3 years ago
Methane gas is 304 C with 4.5 tons of mass flow per hour to an uninsulated horizontal pipe with a diameter of 25 cm. It enters a
Arada [10]

Answer:

a) h_c = 0.1599 W/m^2-K

b) H_{loss} = 5.02 W

c) T_s = 302 K

d) \dot{Q} = 25.125 W

Explanation:

Non horizontal pipe diameter, d = 25 cm = 0.25 m

Radius, r = 0.25/2 = 0.125 m

Entry temperature, T₁ = 304 + 273 = 577 K

Exit temperature, T₂ = 284 + 273 = 557 K

Ambient temperature, T_a = 25^0 C = 298 K

Pipe length, L = 10 m

Area, A = 2πrL

A = 2π * 0.125 * 10

A = 7.855 m²

Mass flow rate,

\dot{ m} = 4.5 tons/hr\\\dot{m} = \frac{4.5*1000}{3600}  = 1.25 kg/sec

Rate of heat transfer,

\dot{Q} = \dot{m} c_p ( T_1 - T_2)\\\dot{Q} = 1.25 * 1.005 * (577 - 557)\\\dot{Q} = 25.125 W

a) To calculate the convection coefficient relationship for heat transfer by convection:

\dot{Q} = h_c A (T_1 - T_2)\\25.125 = h_c * 7.855 * (577 - 557)\\h_c = 0.1599 W/m^2 - K

Note that we cannot calculate the heat loss by the pipe to the environment without first calculating the surface temperature of the pipe.

c) The surface temperature of the pipe:

Smear coefficient of the pipe, k_c = 0.8

\dot{Q} = k_c A (T_s - T_a)\\25.125 = 0.8 * 7.855 * (T_s - 298)\\T_s = 302 K

b) Heat loss from the pipe to the environment:

H_{loss} = h_c A(T_s - T_a)\\H_{loss} = 0.1599 * 7.855( 302 - 298)\\H_{loss} = 5.02 W

d) The required fan control power is 25.125 W as calculated earlier above

5 0
4 years ago
A wood pipe having an inner diameter of 3 ft. is bound together using steel hoops having a cross sectional area of 0.2 in^2. The
Minchanka [31]

Answers:

31.7 inches

Explanation:

Given:

Diameter = 3ft

Let D = Diameter

So, D = 3ft. (Convert to inches)

D = 3 * 12in = 36 inches

Coss-sectional area of the steel = 0.2in²

Gauge Pressure (P) = 4psi

Stress in Steel (σ)= 11.4ksi

Force in steel = ½ (Pressure * Projected Area)

Area (A) = 2 * Force/Pressure

Also, Area (A) = Spacing (S) * Wood Pipe Diameter

Area = Area

2*Force/Pressure = Spacing * Diameter

Substitute values I to the above expression

2 * Force / 4psi = S * 36 inches

Also

Force in steel (F) = Stress in steel (σ) × Cross-sectional area of the steel

So, F = 11.4ksi * 0.2in²

F = 11.4 * 10³psi * 0.2in²

F = 2.28 * 10³ psi.in²

So, 2 * Force / 4psi = S * 36 becomes

2 * 2.28 * 10³/4 = S * 36

S = 2 * 2.28 * 10³ / (4 * 36)

S = 4560/144

S = 31.66667 inches

S = 31.7 inches (approximated)

5 0
4 years ago
Other questions:
  • A sample of wastewater is diluted 10 times. The diluted solution has an ultimate biochemical oxygen demand (BOD), Lo, of 30 mg/L
    9·1 answer
  • What is the physical significance of the Reynolds number?. How is defined for external flow over a plate of length L.
    13·1 answer
  • How is TEL (total equivalent length) measured and calculated? .​
    12·1 answer
  • An air-standard cycle with constant specific heats at room temperature is executed in a closed system with 0.003 kg of air and c
    15·1 answer
  • The two boxcars A and B have a weight of 20000lb and 30000lb respectively. If they coast freely down the incline when the brakes
    11·1 answer
  • Any help is appreciated <3
    14·1 answer
  • How many buttons in an airbus a380 cockpit
    9·2 answers
  • Explain how you would solve for total resistance in a parallel circuit versus a series circuit. How would you apply and solve fo
    10·1 answer
  • Question 8 (1 point)
    5·1 answer
  • Which - type of service shop is least likely to provide service to all
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!