Answer:
oof
Explanation:
I don't know but please don't report me
I am trying to do a challenge
Thank you-
If you don't report me!
Answer:
thoroughly scrutinizing, especially in a disconcerting way.
Explanation:
Answer:
Explanation:
ADT for an 2-D array:
struct array{
int arr[10];
}arrmain[10];
An application that stores an array with 1000 rows and 1000 columns, where less than 10,000 of the array values are non-zero. The two different implementations for such arrays that would be more space efficient than a standard two-dimensional array implementation requiring one million positions are :
1) struct array{
int *p;
}arr[1000];
2) struct array{
int *p;
}arr[1000];
The complete Question is:
Airflow through a long, 0.15-m-square air conditioning duct maintains the outer duct surface temperature at 10°C. If the horizontal duct is uninsulated and exposed to air at 35°C in the crawlspace beneath a home, what is the heat gain per unit length of the duct? Evaluate the properties of air at 300 K. For the sides of the duct, use the more accurate Churchill and Chu correlations for laminar flow on vertical plates.
What is the Rayleigh number for free convection on the outer sides of the duct?
What is the free convection heat transfer coefficient on the outer sides of the duct, in W/m2·K?
What is the Rayleigh number for free convection on the top of the duct?
What is the free convection heat transfer coefficient on the top of the duct, in W/m2·K?
What is the free convection heat transfer coefficient on the bottom of the duct, in W/m2·K?
What is the total heat gain to the duct per unit length, in W/m?
Answers:
- 7709251 or 7.709 ×10⁶
- 4.87
- 965073
- 5.931 W/m² K
- 2.868 W/m² K
- 69.498 W/m
Explanation:
Find the given attachments for complete explanation
Answer:
B.197 gpm and 12.4 L/s
Explanation:
Given that
Load Q = 404.5 KW
Water inlet temperature= 6.1 °C
Water outlet temperature= 13.9°C
We know that specific heat for water

Now from energy balance

by putting the values


(1 Kg/s = 15.85 gal/min)
We can say that
We know that

12.38=1000 x volume flow rate

So
volume flow rate = 12.38 L/s
So the option B is correct.