Answer:
look up what they are then how many are around the world and then go from there
Explanation:
Answer:
Light, Temperature, Humidity, Wind, and Soil water
Explanation:
Plants transpire more rapidly in the light than in the dark. This is largely because light stimulates the opening of the stomata (mechanism). Light also speeds up transpiration by warming the leaf.
Plants transpire more rapidly at higher temperatures because water evaporates more rapidly as the temperature rises. At 30°C, a leaf may transpire three times as fast as it does at 20°C.
The rate of diffusion of any substance increases as the difference in concentration of the substances in the two regions increases.When the surrounding air is dry, diffusion of water out of the leaf goes on more rapidly.
When there is no breeze, the air surrounding a leaf becomes increasingly humid thus reducing the rate of transpiration. When a breeze is present, the humid air is carried away and replaced by drier air.
A plant cannot continue to transpire rapidly if its water loss is not made up by replacement from the soil. When absorption of water by the roots fails to keep up with the rate of transpiration, loss of turgor occurs, and the stomata close. This immediately reduces the rate of transpiration (as well as of photosynthesis). If the loss of turgor extends to the rest of the leaf and stem, the plant wilts.
Your answer should be photosynthesis
BrotherEye Online
Answer:
Greeatings here is the soulution to your question
Explanation:
El Niño (the warm phase) and La Niña (the cool phase) lead to significant differences from the average ocean temperatures, winds, surface pressure, and rainfall across parts of the tropical Pacific. Neutral indicates that conditions are near their long-term average.
<span>Answer:
Assuming there is enough acetic anhydride available, then both OH groups will be acetylated to give their acetate esters (OCOCH3). Use a drop of sulfuric acid as the catalyst.</span>