They were imported from China into the United States in 1881.
The first successful release was in Minnesota in 1916.
Hope this helps! :)
Answer:
D. Chemoautotrophs
Explanation:
Autotrophs in plain are organisms that synthesize their own food while hetrotrophs are organisms that do not synthesize their own food.
Chemotrophs (Chemoautotrophs and Chemohetrotrophs) are a group of organisms that obtain their energy through the oxidation of inorganic molecules, These organisms require carbon to survive and reproduce.
Chemoautotrophs are able to produce inorganic molecules by the fixation of CO2 from their immediate environment. The energy required for this process is got from Nitrogen, Magnesium, Sulphur etc.
Chemohetrotrophs are a class of chemotrophs that are unable to synthesize their own food but rather ingest complex molecules like carbohydrates from the environment.
Phototrophs are a group of organisms unlike chemotrophs that depend on the source of light or sunlight for synthesizing its food or organic molecules.
Photoautotrophs are basically photosynthetic plants which are able to carry out photosynthesis ie the conversion of CO2 and H2O to give Glucose and Oxygen in the presence of sunlight.
Photohetrotrophs are a class of organisms that do not synthesize their own food but rely on other organisms or already made organic molecules.
Tin, because it has five energy levels with four electrons in the fifth level
.
Explanation:
Tin has an electronic configuration as
1s2,2s2,2p6,3s2,...........4d10, 5s2,5p2
They have four valence electrons in their outer shell
Among the four diagrams given Tin is least reactive because the atomic radius of tin is largest among all four options. Due to large atomic radius electronegativity decreases and hence Tin is the least reactive element among Neon, Chlorine, gallium and tin.
The electronegativity of an element is its tendency to complete its octet by attracting electrons towards itself. Also tin is at the lowest place in the periodic table among all the four mentioned elements, its ionization energy is also low hence less electronegative and least reactive.
The source of the sugar metabolized by the seed is photosynthesis.
The procedure used by plants to transform light energy into a chemical form of energy is known as photosynthesis. The chemical energy can afterward be discharged to fuel the plants to perform their activities.
During photosynthesis, carbon dioxide and water can be combined in the existence of chlorophyll and sunlight to generate oxygen and glucose (carbohydrates). However, the prime component generated in the procedure is glucose (sugar) that is the molecule, which generates energy to mediate the activities of the cell.