Answer:
The temperature required is near about 3 million kelvin
Explanation:
The brilliance of the star results from the nuclear reaction that take place in the core of the star and radiate a huge amount of thermal energy resulting from the fusion of hydrogen into helium.
For this reaction to take place, the temperature of the star's core must be near about 3 million kelvin.
The hydrogen atoms collide and starts and the energy from the collision results in the heating of the gas cloud. As the temperature comes to near about
, the nuclear fusion reaction takes place in the core of the gas cloud.
The huge amount of thermal energy from the nuclear reaction gives the gas cloud a brilliance resulting in a protostar.
Answer:
65 m/s
Explanation:
v=v0+at <=> v = 11 + 12 t ∧ t = 4.5 s <=> v = 11 + 12×4.5 <=> v = 65 m/s
Answer:
1.25 m/s
Explanation:
m1v1+m2v2=m1v1f+m2v2f
(1425*13)+(1175*0)=(1425*v1f)+(1175*14.25)
18525+0=1425(v1f)+16743.75
1781.25=1425(v1f)
v1f=1.25 m/s
The speed of light to be slightly less in atmosphere then in vacuum because of absorption and re-emission of light by the atmospheric molecules occurred when light travels through a material
<u>Explanation:</u>
When light passes through atmosphere, it interacts or transmits through the transparent molecules in atmosphere. In this process of transmission through atmosphere, the light will be getting absorbed by them and some will get re-emitted or refracted depending upon wavelength.
But in vacuum the absence of any kind of particles will lead to no interaction and no energy loss, thus the speed of the light will be same in vacuum while due to interactions with molecules of atmosphere, there speed will be slightly less compared to in vacuum.
Answer: What is this supposed to be converted into?
Explanation: