Acceleration = ▵v/▵t
Time = d/v
Fisrt calculate time : ( 118/29 ) = 4 seconds
Then calculate acceleration
A = 29/4 = 7.25 m/s²
Now the force.
Force = mass * acceleration.
F= 1,019 * 7.25
F= 7,387 N
The statement about "<span>efficiency compared the output work to the output force" is false. Efficiency can be compared from the input work to the output work.</span>
By using drift velocity of the electron, the current flow is 7.20 ampere.
We need to know about drift velocity of electrons to solve this problem. The drift velocity can be determined as
v = I / (n . A . q)
where v is drift velocity, I is current, n is atom number density, A is surface area and q is the charge.
From the question above, we know that
d = 2.097 mm
r = (0.002097 / 2) m
v = 1.54 mm/s = 0.00154 m/s
ρ = 8.92 x 10³ kg/m³
q = e = 1.6 x 10¯¹⁹C
Find the atom density
n = Na x ρ / Mr
where Na is Avogadro's number (6.022 x 10²³), Mr is the atomic weight of copper (63.5 g/mol = 0.635 kg/mol).
n = 6.022 x 10²³ x 8.92 x 10³ / 0.635
n = 8.46 x 10²⁷ /m³
Find the current flows
v = I / (n . A . q)
0.00154 = I / (8.46 x 10²⁷ . πr² . 1.6 x 10¯¹⁹)
0.00154 = I / (8.46 x 10²⁷ . π(0.002097 / 2)² . 1.6 x 10¯¹⁹)
I = 7.20 ampere
For more on drift velocity at: brainly.com/question/25700682
#SPJ4
Acceleration=(change in speed)/(time for the change). 43/0.28 = 153.6 m/s^2.
Answer:
The maximum electric field strength = 0.01 V/m
Explanation:
Given
ΔV(max) = 4.00 mV = 0.004 V
d = 0.400 m
f = 1.00 Hz
Maximum electric field = (maximum potential)/(length)
Maximum electric field = E(max)
Maximum potential = 4.00 mV = 0.004 V
Length = 0.400 m
E(max) = (0.004/0.4) = 0.01 V/m
Hope this Helps!!!