C is the correct answer I think
To tessellate a surface using a regular polygon, the interior angle must be a sub-multiple (i.e. factor) of 360 degrees to cover completely the surface.
For a regular three-sided polygon, the interior angle is (180-360/3)=60 °
Since 6*60=360, so a regular three-sided polygon (equilateral triangle) tessellates.
For a regular four-sided polygon, the interior angle is (180-360/4)=90 °
Since 4*90=360, so a regular four-sided polygon (square) tessellates.
For a regular five-sided polygon, the interior angle is (180-360/5)=108 °
Since 360/108=3.33... (not an integer), so a regular five-sided polygon (pentagon) does NOT tessellate.
For a regular six-sided polygon, the interior angle is (180-360/6)=120 °
Since 3*120=360, so a regular six-sided polygon (hexagon) tessellates.
Answer: 2^14
Step-by-step explanation:
Answer:
8 seconds
Step-by-step explanation:
lets first start by plugging in 1024 into initial height
h(t) = -16t^2 + 1024
I would find a Greatest Common Factor (GCF) first
-16(t^2 - 64) If this is new just think that if you multiply -16 by t squared and -64 you will come back to the original equation
But now we notice that T squared -64 can be factored with the difference of perfect squared method
so we will get -16(t-8)(t+8)
So to get the answers we will set everything equal to 0
-16t =0
t =0 this is the time that the penny was thrown
t-8 = 0
t = 8 the is the time the penny hit the ground
t+8 =0
t= -8 This is an extraneous solution or a solution that doesn't make sense so we just disregard the solution.
Answer:
yes because
Step-by-step explanation:
this point, we pause to see if it makes sense that we actually have two viable cases to consider. As we have discussed, both candidates for are ‘compatible’ with the given angle-side pair ( ;a) = (30 ;3) in that both choices for can t in a triangle with and both have a sine of 2 3. The only other given piece of information is that c= 4 units.