Answer:
B) 1:3
Step-by-step explanation:
Let's layout the information given firstly.
Marigolds= 18
Petunias= 6
In ratios, you need to follow the arrangement, for say in this question they say petunias go first, so the ratio should involve the value 6 first.
Therefore, it will give you, 6:18.
Now, you need to simplify this ratio. Just simplify it as it were, a fraction. Divide each number by a common factor, in this case, it is 6. Once you've done that, you'll get 1:3.
Hope this helped.
12 times 2 + 9 times 2 = 24 + 18 = 42 divided by 16 = 2.625
Ur missing numbers are -2, 6, and 36
Since the center point is (-2,6), the numbers are reversed in the equation to: (x+2) or(x- -2) and (y-6)
The radius is 6 units so u square it to get 36
SOLUTION
From the question, the center of the hyperbola is

a is the distance between the center to vertex, which is -1 or 1, and
c is the distance between the center to foci, which is -2 or 2.
b is given as
![\begin{gathered} b^2=c^2-a^2 \\ b^2=2^2-1^2 \\ b=\sqrt[]{3} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20b%5E2%3Dc%5E2-a%5E2%20%5C%5C%20b%5E2%3D2%5E2-1%5E2%20%5C%5C%20b%3D%5Csqrt%5B%5D%7B3%7D%20%5Cend%7Bgathered%7D)
But equation of a hyperbola is given as

Substituting the values of a, b, h and k, we have
![\begin{gathered} \frac{(x-0)^2}{1^2}-\frac{(y-0)^2}{\sqrt[]{3}^2}=1 \\ \frac{x^2}{1}-\frac{y^2}{3}=1 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Cfrac%7B%28x-0%29%5E2%7D%7B1%5E2%7D-%5Cfrac%7B%28y-0%29%5E2%7D%7B%5Csqrt%5B%5D%7B3%7D%5E2%7D%3D1%20%5C%5C%20%5Cfrac%7Bx%5E2%7D%7B1%7D-%5Cfrac%7By%5E2%7D%7B3%7D%3D1%20%5Cend%7Bgathered%7D)
Hence the answer is
Answer:
7x⁴ + 5x³ + 7x² + 6x + 5
Step-by-step explanation:
The given expression is
(5x4 + 5x3 + 4x - 9) + (2x4 + 7x2 + 2x + 14)
The first step is to open the brackets by multiplying each term inside each bracket by the term outside each bracket. Since the term outside each bracket is 1, the expression becomes
5x⁴ + 5x³ + 4x - 9 + 2x⁴ + 7x² + 2x + 14
We would collect like terms by combining each term with the same exponent or raised to the same power. The term would be arranged in decreasing order of the exponents. It becomes
5x⁴ + 2x⁴ + 5x³ + 7x² + 4x + 2x - 9 + 14
7x⁴ + 5x³ + 7x² + 6x + 5