Answer: 9
because you need to first use the ones in the parentheses and then move on.
For this case what we must do is a composition of functions which will be given by:
m (x) = 4x - 11
n (x) = x - 10
We have then:
m [n (x)] = 4 (x - 10) - 11
Rewriting the function:
m [n (x)] = 4x - 40 - 11
m [n (x)] = 4x - 51
Answer:
a. m [n (x)] = 4x - 51
Answer:
x = π/3, x = 5π/3, x = 4π/3
Step-by-step explanation:
Let's split the given equation (2cosx-1)(2sinx+√3 ) = 0 into two parts, and solve each separately. These parts would be 2cos(x) - 1 = 0, and 2sin(x) + √3 = 0.

Remember that the general solutions for cos(x) = 1/2 are x = π/3 + 2πn and x = 5π/3 + 2πn. In this case we are given the interval 0 ≤ x ≤2π, and therefore x = π/3, and x = 5π/3.
Similarly:

The general solutions for sin(x) = - √3/2 are x = 4π/3 + 2πn and x = 5π/3 + 2πn. Therefore x = 4π/3 and x = 5π/3 in this case.
So we have x = π/3, x = 5π/3, and x = 4π/3 as our solutions.
Answer:
Step-by-step explanation:
find the attachment showing std normal curve symmetrical about y axis.
Equal probabilities on either side of the mean thus the total probability to the right of mean is 0.50
From the table we can find that
a) P(Z>2.5) = 0.5- area lying between 0 and 2.5
= 0.5-0.4938 =0.0062
b) P(1.2<z<2.2) = F(2.2)-F(1.2)
= 0.9861-0.3849
=0.6012