1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zheka24 [161]
3 years ago
12

GUYS I SWEARRR I NEED HELP PLS IM BEGGING IMA FAIL MA TEST

Mathematics
2 answers:
Lady bird [3.3K]3 years ago
5 0

Answer:

G is correct

Step-by-step explanation:

pls brainliest,      

liubo4ka [24]3 years ago
3 0

Answer:

g

Step-by-step explanation:

You might be interested in
If anyone knows about definite integrals for calculus then please I request help! I
kicyunya [14]

Answer:

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 4x^{-2}
  2. [<em>u</em>] Differentiate [Basic Power Rule, Derivative Properties]:                       \displaystyle du = \frac{-8}{x^3} \ dx
  3. [Bounds] Switch:                                                                                           \displaystyle \left \{ {{x = 9 ,\ u = 4(9)^{-2} = \frac{4}{81}} \atop {x = 5 ,\ u = 4(5)^{-2} = \frac{4}{25}}} \right.

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^9_5 {\frac{-8}{x^3}e^\big{4x^{-2}}} \, dx
  2. [Integral] U-Substitution:                                                                              \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^{\frac{4}{81}}_{\frac{4}{25}} {e^\big{u}} \, du
  3. [Integral] Exponential Integration:                                                               \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}(e^\big{u}) \bigg| \limits^{\frac{4}{81}}_{\frac{4}{25}}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8} \bigg( e^\Big{\frac{4}{81}} - e^\Big{\frac{4}{25}} \bigg)
  5. Simplify:                                                                                                         \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

4 0
3 years ago
Mark makes $60 for every six hour shift he works. How much will he make if he works an eight hour shift
Illusion [34]

Answer:

Mark will make $80 if he works an eight-hour shift.

Step-by-step explanation:

For every six hour shift he works, Mark makes $60

This implies that for every hour, he makes $10 ($60/6)

Therefore, for working an eight-hour shift, Mark will make $80 ($10 * 8) or ($60/6 * 8).

We can conclude that Mark's employer pays him $10 per hour.

This hourly rate can be used to work out how much Mark will earn if he works for a month or a year, as the case may be.

7 0
3 years ago
Jeremy’s dad is making cupcakes for his birthday. He needs 50 cupcakes in all. So far he made 13 chocolate cupcakes and 15 vanil
Iteru [2.4K]

Answer:

22 cupcakes

Step-by-step explanation:

13+15=28

50-28=22

4 0
3 years ago
Read 2 more answers
Is line m: -x+2y=6 parallel, perpendicular, or neither parallel nor perpendicular to line n: y=-2x+6?
Serhud [2]
Make them both equal to y

y=-2x+6

2y=x+6 y=1/2x+3

These are perpendicular since ones slope is -2 and the other is the opposite, 1/2.
7 0
3 years ago
Elena got on 25 of her mom's nerves. Later, she gets on 7 more. How many nerves of her mother did Elena trigger?
Dmitry [639]

Answer:

the last one lol- thats just how it works

3 0
3 years ago
Other questions:
  • What is the approximate value of the function at x = -8<br> A) 2<br> B) 1<br> C) 1.8<br> D) 1.5
    8·1 answer
  • At 1 pm there were 16 seagulls on the beach.At 3 pm they were 40 seagulls what is the constant rate of change
    8·1 answer
  • What is the reason for statement 4 in this proof?
    15·3 answers
  • Jim ordered a sports drink and three slices of pizza for $8.50. His friend ordered two sports drinks and two slices of pizza for
    13·1 answer
  • Your answer is incorrect.
    12·1 answer
  • Plssss help!!<br><br> find the area of the regular polygon
    8·1 answer
  • Help quick
    11·1 answer
  • Let f(x) = 2x2 + x − 3 and g(x) = x − 1. Find f(x)/g(x) and state its domain.
    5·1 answer
  • Write the equation of the line that passes through the points (-9,-7)(−9,−7) and (-4,4)(−4,4).
    12·1 answer
  • Please help me :,)<br><br>x=-2<br>x=-1<br>x=0<br>x=1<br>x=2​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!