We will use integration by substitution, as well as the integrals
∫
1
x
d
x
=
ln
|
x
|
+
C
and
∫
1
d
x
=
x
+
C
∫
x
3
x
2
+
1
d
x
=
∫
x
2
x
2
+
1
x
d
x
=
1
2
∫
(
x
2
+
1
)
−
1
x
2
+
1
2
x
d
x
Let
u
=
x
2
+
1
⇒
d
u
=
2
x
d
x
. Then
1
2
∫
(
x
2
+
1
)
−
1
x
2
+
1
2
x
d
x
=
1
2
∫
u
−
1
u
d
u
=
1
2
∫
(
1
−
1
u
)
d
u
=
1
2
(
u
−
ln
|
u
|
)
+
C
=
x
2
+
1
2
−
ln
(
x
2
+
1
)
2
+
C
=
x
2
2
−
ln
(
x
2
+
1
)
2
+
1
2
+
C
=
x
2
−
ln
(
x
2
+
1
)
2
+
C
Final answer
Answer:
this video may be helped to u
Step-by-step explanation:
https://youtu.be/3FMWXYebxL4
Answer:
x=-27
Step-by-step explanation:
-0.57x+0.27x = 8.1
-0.3x = 8.1
x = -8.1/0.3
x = -27
Okay what’s the question?
Answer:
All real numbers are solutions
Step-by-step explanation:
Let's solve your equation step-by-step
3(x+2)=5x+1−2x+5
Step 1: Simplify both sides of the equation
3(x+2)=5x+1−2x+5
(3)(x)+(3)(2)=5x+1+−2x+5(Distribute)
3x+6=5x+1+−2x+5
3x+6=(5x+−2x)+(1+5)(Combine Like Terms)
3x+6=3x+6
3x+6=3x+6
Step 2: Subtract 3x from both sides
3x+6−3x=3x+6−3x
6=6
Step 3: Subtract 6 from both sides
6−6=6−6
0=0