Answer:
11.1 units
Step-by-step explanation:
We solve for this using the formula when using coordinates (x1 , y1) and (x2, y2)
= √(x2 - x1)² + (y2 - y1)²
A(5,2), B(5,4), and C(1,1).
For AB = √(x2 - x1)² + (y2 - y1)²
= A(5,2), B(5,4)
= √(5 - 5)² +(4 - 2)²
= √ 0² + 2²
= √4
= 2 units
For BC = √(x2 - x1)² + (y2 - y1)²
= B(5,4), C(1,1)
= √(1 - 5)² +(1 - 4)²
= √ -4² + -3²
= √16 + 9
= √25
= 5 units
For AC = √(x2 - x1)² + (y2 - y1)²
A(5,2), C(1,1)
= √(1 - 5)² + (1 - 2)²
= √-4² + -1²
= √16 + 1
= √17
= 4.1231056256 units
The Formula for the Perimeter of Triangle = Side AB + Side BC + Side AC
= 2 units + 5 units + 4.1231056256 units
= 11.1231056256 units.
Approximately the Perimeter of a Triangle to the nearest tenth = 11.1units
By critically observing the two triangles, we can deduce that they: B. might not be congruent.
<h3>The properties of similar triangles.</h3>
In Geometry, two triangles are said to be similar when the ratio of their corresponding sides are equal in magnitude and their corresponding angles are congruent.
By critically observing the two triangles, we can logically deduce that the three angles of both triangles are congruent in accordance with AAA similarity postulate:
However, AAA isn't a congruence postulate and as such all similar triangles might not be congruent.
Read more on congruency here: brainly.com/question/11844452
#SPJ1
<span>The shortest path from a starting point to an endpoint, regardless of the path taken, is called the </span>geodesic. In flat (Euclidean) space it is simply a straight line.
Answer:
3(7 + 4)2 − 24 ÷ 6 = 62
Step-by-step explanation:
3(7 + 4)2 − 24 ÷ 6 is the given expression.
Now, by the rule of BODMAS, where B = Bracket, O= of, D = divide,
M = multiplication, A = addition and S = subtraction
we try and solve the following expression in the same order.
Solving the bracket first, we get
3<u>(7 + 4)</u>2 − 24 ÷ 6 = 3(<u>11</u>)2 − 24 ÷ 6 =<u> 66</u> − 24 ÷ 6
Next, we solve divide,
66 − <u>24 ÷ 6</u> = 66 - <u>4</u>
Next, solving the subtraction, 66 - 4 = 62
Hence, 3(7 + 4)2 − 24 ÷ 6 = 62