What do you have to do in that problem?
Answer:
40*
Step-by-step explanation:
the whole line FC would measure 180* so then 180-50 for AGC then AGB is congruent to EGD so 180-50-90---> 130-90---> 40* so angleBGC is 40 degrees
Answer:
The equation is y = -3 + 3
Step-by-step explanation:
It will go through (0,3) and it wil go up 3 right one.
<h2>
The area of a triangle is =54 square units</h2><h2>
The perpendicular distance from B to AC is = 
</h2>
Step-by-step explanation:
Given a triangle ABC with vertices A(2,1),B(12,2) and C(12,8)

The area of a triangle is= ![\frac{1}{2} [x_1(y_2-y_3) +x_2 (y_3- y_1)+x_3(y_1-y_2)]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%20%5Bx_1%28y_2-y_3%29%20%2Bx_2%20%28y_3-%20y_1%29%2Bx_3%28y_1-y_2%29%5D)
=![|\frac{1}{2} [2(2-8+12(8-1)+12(1-2)]|](https://tex.z-dn.net/?f=%7C%5Cfrac%7B1%7D%7B2%7D%20%5B2%282-8%2B12%288-1%29%2B12%281-2%29%5D%7C)
=
= 54 square units
The length of AC = 
= 
=
units
Let the perpendicular distance from B to AC be = x
According To Problem

⇔
units
Therefore the perpendicular distance from B to AC is = 
The measures of spread include the range, quartiles and the interquartile range, variance and standard deviation. Let's consider each one by one.
<u>Interquartile Range: </u>
Given the Data -> First Quartile = 2, Third Quartile = 5
Interquartile Range = 5 - 2 = 3
<u>Range:</u> 8 - 1 = 7
<u>Variance: </u>
We start by determining the mean,

n = number of numbers in the set
Solving for the sum of squares is a long process, so I will skip over that portion and go right into solving for the variance.

5.3
<u>Standard Deviation</u>
We take the square root of the variance,

2.3
If you are not familiar with variance and standard deviation, just leave it.