Going down the chart:
6
4
3
4
6
the brackets on the outside of the lxl makes the value positive or keeps the value positive. therefor if u have y=l-3l+3 y will still =6! hope this helps!
The third term of the expansion is 6a^2b^2
<h3>How to determine the third term of the
expansion?</h3>
The binomial term is given as
(a - b)^4
The r-th term of the expansion is calculated using
r-th term = C(n, r - 1) * x^(n - r + 1) * y^(r - 1)
So, we have
3rd term = C(4, 3 - 1) * (a)^(4 - 3 + 1) * (-b)^(3-1)
Evaluate the sum and the difference
3rd term = C(4, 2) * (a)^2 * (-b)^2
Evaluate the exponents
3rd term = C(4, 2) * a^2b^2
Evaluate the combination expression
3rd term = 6 * a^2b^2
Evaluate the product
3rd term = 6a^2b^2
Hence, the third term of the expansion is 6a^2b^2
Read more about binomial expansion at
brainly.com/question/13602562
#SPJ1
Answer:
68%
Step-by-step explanation:
85 divided by 125 = .68 * 100 = 68
It would be twice whatever the midsegment equals.
Answer:
Top 5% is 5.84 milliters and the bottom 5% is 5.60 millimeters.
Step-by-step explanation:
Problems of normally distributed samples can be solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

Top 5%:
X when Z has a pvalue of 0.95. So X when Z = 1.645




Bottom 5%:
X when Z has a pvalue of 0.05. So X when Z = -1.645




Top 5% is 5.84 milliters and the bottom 5% is 5.60 millimeters.