The two angles are x and 9x/5
<h3 /><h3 />
Let the two angles we require be x and y.
<h3 /><h3>Ratio of both angles</h3>
We have that the ratio of both angles are x:y
Since both angles are in the ratio 5:9, we have that,
x:y = 5:9
⇒ x/y = 5/9
<h3 /><h3>Value of the other angle</h3>
So, we Make y subject of the formula
Multiplying both sides by y, we have
y × x/y = 5/9 × y
x = 5y/9
Multiplying both sides by 9, we have
9 × x = 5y/9 × 9
9x = 5y
Dividing both sides by 5, we have
9x/5 = 5y/5
y = 9x/5
So, the two angles are x and 9x/5
Learn more about angles here:
brainly.com/question/14362353
Answer:
37.8
Step-by-step explanation:
Set up a proportion using the values given in the diagram of similar triangles.
31.5/15 = x/18
Cross-multiply.
31.5(18) = 15x
Multiply.
567 = 15x
Divide both sides by 15.
37.8 = x
Answer: GH = HJ = 4.6
Step-by-step explanation:
Answer:
b)0, yes
Step-by-step explanation:
Given:
Vectors (4,8) . (6,-3)
Finding inner product of vectors:
= 4x6 + 8x-3
=24-24
=0
Now to check the angle between them using formula a.b=|a|.|b|cosθ
|a|= 
=8.9
|b|=
=6.7
Putting values of a.b=0 and |a|=8.9, |b|=6.7 in a.b=|a|.|b|cosθ we get,
0= 8.9(6.7)cosθ
cosθ =0
θ=90 degrees
Hence the two vectors are perpendicular !