Let t = number of hours
The first candle starts at 8 inches.
It burns at 7/10 inch per hour, so in t hours it burns (7/10)t inches.
After t hours, its length is 8 - (7/10)t
The second candle starts at 6 inches.
It burns at 1/5 inch per hour, so in t hours it burns (1/5)t inches.
After t hours, its length is 6 - (1/5)t
You want the lengths to be equal, so the equation is
8 - (7/10)t = 6 - (1/5)t
40.8 because u take 15 percent of 48 and subtract it from 48
7.2 - 48 = 40.8
Answer:
x = -3
, y = 0
Step-by-step explanation:
Solve the following system:
{4 x - y = -12 | (equation 1)
-x - y = 3 | (equation 2)
Add 1/4 × (equation 1) to equation 2:
{4 x - y = -12 | (equation 1)
0 x - (5 y)/4 = 0 | (equation 2)
Multiply equation 2 by 4/5:
{4 x - y = -12 | (equation 1)
0 x - y = 0 | (equation 2)
Multiply equation 2 by -1:
{4 x - y = -12 | (equation 1)
0 x+y = 0 | (equation 2)
Add equation 2 to equation 1:
{4 x+0 y = -12 | (equation 1)
0 x+y = 0 | (equation 2)
Divide equation 1 by 4:
{x+0 y = -3 | (equation 1)
0 x+y = 0 | (equation 2)
Collect results:
Answer: {x = -3
, y = 0
Answer:x=-20
Step-by-step explanation: