]Eigenvectors are found by the equation

implying that

. We then can write:
And:
Gives us the characteristic polynomial:

So, solving for each eigenvector subspace:
![\left [ \begin{array}{cc} 4 & 2 \\ 5 & 1 \end{array} \right ] \left [ \begin{array}{c} x \\ y \end{array} \right ] = \left [ \begin{array}{c} -x \\ -y \end{array} \right ]](https://tex.z-dn.net/?f=%5Cleft%20%5B%20%5Cbegin%7Barray%7D%7Bcc%7D%204%20%26%202%20%5C%5C%205%20%26%201%20%5Cend%7Barray%7D%20%5Cright%20%5D%20%5Cleft%20%5B%20%5Cbegin%7Barray%7D%7Bc%7D%20x%20%5C%5C%20y%20%5Cend%7Barray%7D%20%5Cright%20%5D%20%3D%20%5Cleft%20%5B%20%5Cbegin%7Barray%7D%7Bc%7D%20-x%20%5C%5C%20-y%20%5Cend%7Barray%7D%20%5Cright%20%5D%20)
Gives us the system of equations:
Producing the subspace along the line

We can see then that 3 is the answer.
Answer:
<h2>
√34sin(x + 0.33π)</h2>
Step-by-step explanation:
The general form of the equation acosx + bsinx = Rsin(x + e) where R is the resultant of the constants 'a' and 'b' and e is the angle between them.
R = √a²+b²

Given the function f(x) = 3 cos x + 5 sin x, comparing with the general equation;
a = 3, b = 5
R = √3²+5²
R = √9+25
R =√34

in radians;

3 cos x + 5 sin x = √34sin(x + 0.33π)
The coordinate of point V is at (-16, 9)
If Point T(-9,5) lies on the perpendicular bisector of UV, this means that the point divides the line UV into two equal parts
Given the following coordinates
Midpoint T = (-9, 5)
U = (-2, 1)
Required
coordinate of point V
Using the midpoint formulas;

Get the value if x₂ and y₂

Similarly;

Hence the coordinate of point V is at (-16, 9)
Learn more here: brainly.com/question/18049211
The length of EH would be 4.8
Answer: 1
Step-by-step explanation: