Answer:
f^-1(x) = (x-1)/-3
Step-by-step explanation:
Invert equation:
Describe X in original function:
multiplied by -3
add 1
Reverse order:
subtract 1
divide by -3
Answer:
(2, 14), (3, 7)
Step-by-step explanation:
The way these angles are numbered, corresponding angle numbers differ by 4, 8, or 12.
Corresponding angles are ...
Angle 2 and Angle 14 . . . . . . numbers differ by 12
Angle 3 and Angle 7 . . . . . . . numbers differ by 4
_____
If a given angle is Northwest of the intersection, any corresponding angle will also be Northwest of its intersection. Corresponding angles are ...
northwest: {1, 5, 9, 13}
northeast: {2, 6, 10, 14}
southeast: {3, 7, 11, 15}
southwest: {4, 8, 12, 16}
Any pair of numbers from the same set will be corresponding angles.
If I counted correctly, the answer would be 52/150. You just need to simplify the fraction. I'll recount soon, and update if it changes.
Let's look at an example.
We'll add the fractions 1/6 and 1/8
Before we can add, the denominators must be the same.
To get the denominators to be the same, we can...
- multiply top and bottom of 1/6 by 8 to get 8/48
- multiply top and bottom of 1/8 by 6 to get 6/48
At this point, both fractions involve the denominator 48. We can add the fractions like so
8/48 + 6/48 = (8+6)/48 = 14/48
Add the numerators while keeping the denominator the same the entire time.
The last step is to reduce if possible. In this case, we can reduce. This is because 14 and 48 have the factor 2 in common. Divide each part by 2.
The fraction 14/48 reduces to 7/24
Overall, 1/6 + 1/8 = 7/24
Answer:
4445.18 pulgadas cúbicas
Step-by-step explanation:
Paso 1
La fórmula para la circunferencia de una esfera = 2πr
Circunferencia de una esfera = 64 pulgadas
Por eso,
64 = 2πr
Por lo tanto, encontramos r
Dividir ambos lados por 2π
64 / 2π = 2πr / 2π
r = 10.185916358 pulgadas
Radio r = 10.2 pulgadas
Paso 2
Volumen de una esfera
= 4/3 × π × r³
r = 10.2 pulgadas
Por lo tanto, 4/3 × π × (10.2) ³
= 4445.18 pulgadas cúbicas
Por lo tanto, el volumen en pulgadas cúbicas de una esfera = 4445.18 pulgadas cúbicas