The given expression :

For coordinates:
put x = 0 then :

Coordinate : (x, y) = (0, 1)
Put x= 1 and simplify :

Coordinate : (x, y) = ( 1, 0.5)
Put x = (-2) and simplify :

Coordinate : (x, y) = ( -2, 4)
Put x = (-3) and simplify :

Coordinate : (x, y) = (-3, 8)
Substitute x = (-1) and simplify :

Coordinate : (x, y) = ( -1, 2)
So, the coordinates are :
The graph is :
Check the picture below.
so, the center of the circle is the midpoint of that diametrical segment, and half that length is the radius.

![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ \begin{array}{ccccccccc} &&x_1&&y_1&&x_2&&y_2\\ % (a,b) &&(~ -2 &,& -4~) % (c,d) &&(~ 3 &,& 8~) \end{array}~~~ % distance value d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ d=\sqrt{[3-(-2)]^2+[8-(-4)]^2}\implies d=\sqrt{(3+2)^2+(8+4)^2} \\\\\\ d=\sqrt{25+144}\implies d=\sqrt{169}\implies d=13\qquad\qquad \qquad \stackrel{radius}{\frac{13}{2}}](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%0A%5C%5C%5C%5C%0A%5Cbegin%7Barray%7D%7Bccccccccc%7D%0A%26%26x_1%26%26y_1%26%26x_2%26%26y_2%5C%5C%0A%25%20%20%28a%2Cb%29%0A%26%26%28~%20-2%20%26%2C%26%20-4~%29%20%0A%25%20%20%28c%2Cd%29%0A%26%26%28~%203%20%26%2C%26%208~%29%0A%5Cend%7Barray%7D~~~%20%0A%25%20%20distance%20value%0Ad%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0Ad%3D%5Csqrt%7B%5B3-%28-2%29%5D%5E2%2B%5B8-%28-4%29%5D%5E2%7D%5Cimplies%20d%3D%5Csqrt%7B%283%2B2%29%5E2%2B%288%2B4%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0Ad%3D%5Csqrt%7B25%2B144%7D%5Cimplies%20d%3D%5Csqrt%7B169%7D%5Cimplies%20d%3D13%5Cqquad%5Cqquad%20%5Cqquad%20%20%5Cstackrel%7Bradius%7D%7B%5Cfrac%7B13%7D%7B2%7D%7D)
Answer:
y = -2
x = 5
Step-by-step explanation:
3x - y = 17
-x + y = -7
here we can find the sum of the two equations
2x = 10
x = 5
now we can just plug in the value of x to find y
-(5) + y = -7
y = -2
Answer:
A) 14°
Step-by-step explanation:
If α and β are the two angles other than 90° in a right triangle, then we have the relation between α and β as, α+β=90°.
Therefore, Sin α = Sin (90° -β) =Cos β.
So, we can write the reverse as if Sin α = Cosβ, then we have α + β =90°.
It is given that, Sin (3x-27) = Cos (5x+5).
Hence, we can write (3x-27) + (5x + 5) = 90
⇒ 8x = 90+27-5 =112
⇒ x = 14°
Therefore, option A. is correct. (Answer)