1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ahrayia [7]
3 years ago
6

A right triangle is a triangle that includes one right angle, measuring 90

Mathematics
2 answers:
sleet_krkn [62]3 years ago
4 0

Answer:

B) one 90 degree angle

Step-by-step explanation:

Bingel [31]3 years ago
3 0

Answer:

B

Step-by-step explanation:

i know

You might be interested in
What is a unit rate?<br> PLEASE WILL MARK BRAINLIEST FOR QUICK ANSWER
Agata [3.3K]

Answer:

A unit rate is a rate with 1 in the denominator.

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Suppose h(t) = -4t^2+ 11t + 3 is the height of a diver above the water (in
Bingel [31]
The diver will hit the water when the height is zero, so we will want to set our height function equal to zero
0 = -4t^2 + 11t + 3
we will then factor to find out value of t that make the function equal to zero
0 = (-4t - 1 ) ( t - 3 )
This means our function equals zero when t = -1/4 s and t = 3 seconds
Since time cannot be negative, our final solution is t = 3 seconds
4 0
2 years ago
Read 2 more answers
If <img src="https://tex.z-dn.net/?f=%5Cmathrm%20%7By%20%3D%20%28x%20%2B%20%5Csqrt%7B1%2Bx%5E%7B2%7D%7D%29%5E%7Bm%7D%7D" id="Tex
Harman [31]

Answer:

See below for proof.

Step-by-step explanation:

<u>Given</u>:

y=\left(x+\sqrt{1+x^2}\right)^m

<u>First derivative</u>

\boxed{\begin{minipage}{5.4 cm}\underline{Chain Rule for Differentiation}\\\\If  $f(g(x))$ then:\\\\$\dfrac{\text{d}y}{\text{d}x}=f'(g(x))\:g'(x)$\\\end{minipage}}

<u />

<u />\boxed{\begin{minipage}{5 cm}\underline{Differentiating $x^n$}\\\\If  $y=x^n$, then $\dfrac{\text{d}y}{\text{d}x}=xn^{n-1}$\\\end{minipage}}

<u />

\begin{aligned} y_1=\dfrac{\text{d}y}{\text{d}x} & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{2x}{2\sqrt{1+x^2}} \right)\\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{x}{\sqrt{1+x^2}} \right) \\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(\dfrac{x+\sqrt{1+x^2}}{\sqrt{1+x^2}} \right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^{m-1}  \cdot \left(x+\sqrt{1+x^2}\right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m\end{aligned}

<u>Second derivative</u>

<u />

\boxed{\begin{minipage}{5.5 cm}\underline{Product Rule for Differentiation}\\\\If  $y=uv$  then:\\\\$\dfrac{\text{d}y}{\text{d}x}=u\dfrac{\text{d}v}{\text{d}x}+v\dfrac{\text{d}u}{\text{d}x}$\\\end{minipage}}

\textsf{Let }u=\dfrac{m}{\sqrt{1+x^2}}

\implies \dfrac{\text{d}u}{\text{d}x}=-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}

\textsf{Let }v=\left(x+\sqrt{1+x^2}\right)^m

\implies \dfrac{\text{d}v}{\text{d}x}=\dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^m

\begin{aligned}y_2=\dfrac{\text{d}^2y}{\text{d}x^2}&=\dfrac{m}{\sqrt{1+x^2}}\cdot\dfrac{m}{\sqrt{1+x^2}}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}\\\\&=\dfrac{m^2}{1+x^2}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\\\\ &=\left(x+\sqrt{1+x^2}\right)^m\left(\dfrac{m^2}{1+x^2}-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\right)\\\\\end{aligned}

              = \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\right)\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)

<u>Proof</u>

  (x^2+1)y_2+xy_1-m^2y

= (x^2+1) \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left[m^2-\dfrac{mx}{\sqrt{1+x^2}}+\dfrac{mx}{\sqrt{1+x^2}}-m^2\right]

= \left(x+\sqrt{1+x^2}\right)^m\left[0]

= 0

8 0
2 years ago
D=5 evaluate 4d <br> Help !!!
dedylja [7]

Answer:

20

Step-by-step explanation:

Substitute D=4  into 4 D.

4 x 5 = 20

7 0
3 years ago
I need a bit of help on BOTH of these. Anyone?
Leona [35]

Answer:

5) "C"

6) DOMAIN: {-3,-1,2,4,6}

    RANGE:   {4,1,2,-2,6}

Step-by-step explanation:

3 0
3 years ago
Other questions:
  • Mimi bought some fabric for a sewing project. The fabric cost $15.40 per meter. She bought 250 centimeters of fabric. How much d
    12·1 answer
  • Help!!!!!!!!!!!!!!!!!
    14·2 answers
  • 1/7+2 1/8-3/2=? <br> What is the first step
    10·1 answer
  • Emma spent $35.22 on 3 dozen bagels and a gallon of iced tea. The price of the gallon of iced tea was $5.25. The following equat
    13·1 answer
  • Fasiz and Dale drive at the same speed along a road. Fasiz drives 8 km
    12·1 answer
  • -3(m + -8) + -12 = -3<br> show work step by step.<br> solve for m
    12·2 answers
  • A spherical water tank holds 10500ft^3. What is the diameter of the tank? Use V=pie/6*d^3
    12·1 answer
  • The triangle shown has a hypotenuse with a length of 13 feet. The measure of angle A is 20 degrees. and the measure of angle B i
    14·1 answer
  • A line has a slope of 2 and a y-intercept of 0 what is its equation in slope intercept form
    5·2 answers
  • The cost to buy one movie ticket is $7. If the total cost for the movie is a function of how many people go, then the input is _
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!