6, 7, 8, and 9. just plug the X into the equation
<span>1220
Subtracting the lower boundary of 1492 grams from the mean of 3234 gives you 1742 grams below the mean. Dividing 1742 by the standard deviation of 871 gives you 2 standard deviations below the curve. Now doing the same with the upper limit of 4976 grams also gives you 2 standard deviations above the mean (4976-3234)/871 = 2
So you now look for what percentage of the population lies within 2 standard deviations of the mean. Standard lookup tables will indicate that 95.4499736% of the population will be within 2Ď of the mean. So multiply 1278 by 0.954499736 giving 1219.851. Then round to the nearest whole number and you have an estimated 1220 babies that weigh between 1492 grams and 4976 grams.</span>
27/3 = 9 cm3
the pyramid is 1/3 the volume of the cube because it fits exactly inside it
Let's assume the frequency of sound be f and wave length is w.
Given that, the frequency of sound varies inversely as the wavelength.
So, we can set up an equation as following:
f*w = k Where k= constant of variation.
Other information is, the frequency of a musical note is 276 cycles per second when the wavelength is 1.2m.
So, next step is to plug in f = 276 and w = 1.2 in the above equation to get the value of k.
276 * 1.2 = k
So, k = 331.2
Next step is to plug in k = 331.2 in the above equation. So,
f * w = 331.2
Now we need to find the wave length : w when frequency : f = 600.
Therefore,
600 * w = 331.2

So, w = 0.552
Hence, the wave length is 0.552 m.
Hope this helps you!.
12+2+8+6+57=85
85/5= 17
mean=17