Using the dot product:
For any vector x, we have
||x|| = √(x • x)
This means that
||w|| = √(w • w)
… = √((u + z) • (u + z))
… = √((u • u) + (u • z) + (z • u) + (z • z))
… = √(||u||² + 2 (u • z) + ||z||²)
We have
u = ⟨2, 12⟩ ⇒ ||u|| = √(2² + 12²) = 2√37
z = ⟨-7, 5⟩ ⇒ ||z|| = √((-7)² + 5²) = √74
u • z = ⟨2, 12⟩ • ⟨-7, 5⟩ = -14 + 60 = 46
and so
||w|| = √((2√37)² + 2•46 + (√74)²)
… = √(4•37 + 2•46 + 74)
… = √314 ≈ 17.720
Alternatively, without mentioning the dot product,
w = u + z = ⟨2, 12⟩ + ⟨-7, 5⟩ = ⟨-5, 17⟩
and so
||w|| = √((-5)² + 17²) = √314 ≈ 17.720
Answer:
a = x² + 3x - 40
Step-by-step explanation:
a = l * w
a = (x - 5)(x + 8)
a = x(x + 8) - 5(x + 8)
a = (x² + 8x) + (- 5x - 40)
a = x² + 3x - 40
Be more specific. Like what is it asking you to do ? I'm trying to help. :)
Answer:
Aiko should not have put both of the 'i' out of the brackets.
Step-by-step explanation:
As only one integer has i with it, it is not possible to take the i out of the bracket.