Given the points A and B
The coordinates of point A = ( 3 , 1 )
The coordinates of point B = (-1 , -1)
The midpoint of AB, is the point C
C will be calculated as following :

so, the midpoint of AB = (1 , 0 )
If his water to cement ratio is 20 to 30, this means that if he uses 20 liters of water, he'd use 30 liters of cement.
The total mixture would then be 20+30=50 liters.
and the water would be 20/50=0.4 or 40% of the total mixture.
Answer:
10% of 2,000=200
Step-by-step explanation:
The mistake she make was that she used the wrong kind of math to get the answer
Find where the expression
x
−
5
x
2
−
25
x
-
5
x
2
-
25
is undefined.
x
=
−
5
,
x
=
5
x
=
-
5
,
x
=
5
Since
x
−
5
x
2
−
25
x
-
5
x
2
-
25
→
→
−
∞
-
∞
as
x
x
→
→
−
5
-
5
from the left and
x
−
5
x
2
−
25
x
-
5
x
2
-
25
→
→
∞
∞
as
x
x
→
→
−
5
-
5
from the right, then
x
=
−
5
x
=
-
5
is a vertical asymptote.
x
=
−
5
x
=
-
5
Consider the rational function
R
(
x
)
=
a
x
n
b
x
m
R
(
x
)
=
a
x
n
b
x
m
where
n
n
is the degree of the numerator and
m
m
is the degree of the denominator.
1. If
n
<
m
n
<
m
, then the x-axis,
y
=
0
y
=
0
, is the horizontal asymptote.
2. If
n
=
m
n
=
m
, then the horizontal asymptote is the line
y
=
a
b
y
=
a
b
.
3. If
n
>
m
n
>
m
, then there is no horizontal asymptote (there is an oblique asymptote).
Find
n
n
and
m
m
.
n
=
1
n
=
1
m
=
2
m
=
2
Since
n
<
m
n
<
m
, the x-axis,
y
=
0
y
=
0
, is the horizontal asymptote.
y
=
0
y
=
0
There is no oblique asymptote because the degree of the numerator is less than or equal to the degree of the denominator.
No Oblique Asymptotes
This is the set of all asymptotes.
Vertical Asymptotes:
x
=
−
5
x
=
-
5
Horizontal Asymptotes:
y
=
0
y
=
0
No Oblique Asymptotes
805043 would be the answer i believe