Answer: the tuition in 2020 is $502300
Step-by-step explanation:
The annual tuition at a specific college was $20,500 in 2000, and $45,4120 in 2018. Let us assume that the rate of increase is linear. Therefore, the fees in increasing in an arithmetic progression.
The formula for determining the nth term of an arithmetic sequence is expressed as
Tn = a + (n - 1)d
Where
a represents the first term of the sequence.
d represents the common difference.
n represents the number of terms in the sequence.
From the information given,
a = $20500
The fee in 2018 is the 19th term of the sequence. Therefore,
T19 = $45,4120
n = 19
Therefore,
454120 = 20500 + (19 - 1) d
454120 - 20500 = 19d
18d = 433620
d = 24090
Therefore, an
equation that can be used to find the tuition y for x years after 2000 is
y = 20500 + 24090(x - 1)
Therefore, at 2020,
n = 21
y = 20500 + 24090(21 - 1)
y = 20500 + 481800
y = $502300
Step-by-step explanation:
x² - 2 = 2^(2/3) + 2^(-2/3)
x² = 2^(2/3) + 2 + 2^(-2/3)
x² = (2^(1/3))² + 2 × 2^(1/3) × 2^(-1/3) +
(2^(-1/3))² (It is in the form of a²+2ab+b²)
x² = (2^(1/3) + 2^(-1/3))²
x = 2^(1/3) + 2^(-1/3)
Answer:
15.0
Step-by-step explanation:
Let's start by looking at triangle ORQ. Since RQ is tangent to the circle, we know that angle ∠ORQ is 90°. Then, since OR is equivalent to the radius of 5, RQ is 5√3, and side OQ is clearly larger than RQ, we can identify this as a 90-60-30 degree triangle. This makes side OQ have a length of 10, and angle ∠QOR, opposite of the second largest side, has the second largest angle of 60°, leaving ∠OQR with an angle of 30°.
The formula for the chord length is 2r*sin(c/2), with c being the angle between the two points on the circle (in this case, ∠QOR=∠NOR).. Our radius is 5, so the length of chord NR is 2*5*sin(60/2)=5, making our answer 5(ON)+5(OR)+5(RN)
The measure of Angle ABD = measure of Angle ABC + measure of Angle CBD
2x + 3y = 40
+
-2x + 2y = 20
___________ Adding both equations
0x + 5y = 60
____________
5y = 60
y = 60/5 = 12
y = 12.
Since we have gotten y =12, and the only option with that is option D.
So we don't have to solve for x.
<span>The answer is D.</span>