1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Jobisdone [24]
3 years ago
10

Where was Malala attacked Where was

Physics
1 answer:
Slav-nsk [51]3 years ago
4 0

Answer:

Swat Valley

Explanation:

not sure but im guessing its on swat valley! not sure tho :)

You might be interested in
POR FAVOR AYUDENME A COMLETARLO
Zigmanuir [339]

Answer:

English please?

Explanation:

8 0
3 years ago
How to find out the heat capacity of a material?​
DochEvi [55]

\huge\underline{\underline{\boxed{\mathbb {EXPLANATION}}}}

The heat capacity is given by the expression:

\longrightarrow \sf{\triangle Q= m \triangle C  \triangle   T}

\longrightarrow \sf{Q= \: Heat}

\longrightarrow \sf{M= \: Mass}

\longrightarrow \sf{C= \: Specific \: Heat}

\longrightarrow \sf{T= \: Temperature}

\huge\underline{\underline{\boxed{\mathbb {ANSWER:}}}}

\leadsto When the \bm{heat} is measured in the calorimeter, we obtain a value, and since we know the mass of the material and we control the change in \bm{temperature} , we can then determine the specific heat "C" by simply remplazing in the expression.

5 0
2 years ago
The physical structure of the earth’s rock is changed by _____.
PSYCHO15rus [73]
It could be stress or strain
4 0
4 years ago
Read 2 more answers
A circular coil of radius r = 5 cm and resistance R = 0.2 is placed in a uniform magnetic field perpendicular to the plane of th
Yuri [45]

Answer:

the question is incomplete, the complete question is

"A circular coil of radius r = 5 cm and resistance R = 0.2 ? is placed in a uniform magnetic field perpendicular to the plane of the coil. The magnitude of the field changes with time according to B = 0.5 e^-t T. What is the magnitude of the current induced in the coil at the time t = 2 s?"

2.6mA

Explanation:

we need to determine the emf induced in the coil and y applying ohm's law we determine the current induced.

using the formula be low,

E=-\frac{d}{dt}(BACOS\alpha )\\

where B is the magnitude of the field and A is the area of the circular coil.

First, let determine the area using \pi r^{2} \\ where r is the radius of 5cm or 0.05m

A=\pi *(0.05)^{2}\\ A=0.00785m^{2}\\

since we no that the angle is at 0^{0}

we determine the magnitude of the magnetic filed

B=0.5e^{-t} \\t=2s

E=-(0.5e^{-2} * 0.00785)

E=-0.000532v\\

the Magnitude of the voltage is 0.000532V

Next we determine the current using ohm's law

V=IR\\R=0.2\\I=\frac{0.000532}{0.2} \\I=0.0026A

I=2.6mA

6 0
4 years ago
The best leaper in the animal kingdom is the puma, which can jump to a height of 3.7m when leaving the ground at an angle of 45
zheka24 [161]

Answer:

v = 12 m/s

Long, boring, and convoluted explanation:

First, let's lay out our information.

- <em>max height = 3.7 m</em>

- <em>0 = 45°</em>

<em>- gravitational acceleration constant = 9.8 </em>\frac{m}{s^2}<em />

<em />

Since the puma leaves the ground at a <em> 45 °</em> angle, its motion will follow a curved path as seen in many projectile motion problems, where the object is being influenced solely by the force of gravity. And because the puma leaves the ground at an angle, its initial velocity is broken down into its horizontal and vertical components. We were also told, though indirectly, that the max height is  <em>3.7m</em>  because the puma can reach up to that height. Gravity is always given to be <em>9.8 </em>\frac{m}{s^2}<em />

<em />

Because we are dealing with maximum height and gravity, we have to use the vertical component of the velocity,  <em>vsin ( θ )</em> , and not the horizontal component, <em>vcos ( θ )</em> .

Given its max height, the acceleration due to gravity, and the angle, we can now solve for the speed at which the puma leaves the ground using the following equation: <em>vsin ( θ )  = </em> \sqrt{2hg}

Where <em> vsin ( θ )</em>  is the vertical component of the initial velocity and <em>h</em>  and <em>g</em> are max height and gravitational acceleration constant respectively.

Plugin, rearrange and solve

v sin ( θ )  =  \sqrt{2hg}

v sin ( 45 ∘ )  =   √ 2  ×  3.7  ×  9.8

v ( 0.71 )  =  \sqrt{72.52}

v ( 0.71 )  =  8.52

v  =  8.52 /0.71

v =  12 m s

<em />

<em />

4 0
3 years ago
Other questions:
  • True or false: The quantity represented by theta_0 is a function of time (i.e., is not constant).
    8·2 answers
  • n deep space, sphere A of mass 47 kg is located at the origin of an x axis and sphere B of mass 110 kg is located on the axis at
    14·1 answer
  • What type of star has an absolute brightness of −3 and a surface temperature around 20,000 °C?
    7·2 answers
  • Which of these terms is defined as the capacity to do work?
    8·2 answers
  • If your heart is not strong enough or efficient enough, it is difficult to (3 points)
    13·2 answers
  • Equipotential surface A has a potential of 5650 V, while equipotential surface B has a potential of 7850 V. A particle has a mas
    8·1 answer
  • A car has a speed of 12m/s. The mass of the car and its passengers is 1250 kg. What is the total momentum of the car/passengers?
    12·1 answer
  • Please help with number 6, or any of them
    8·1 answer
  • A gas in a cylinder expands from a volume of 0.110 m³ to 0.320 m³. heat flows into the gas just rapidly enough to keep the press
    9·1 answer
  • What is the motional kinetic energy of a 25 kg object moving at a speed of 10 m/s?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!