True.
Density = mass / volume, Unit = g / cm³.
This is a common unit because of its affiliation with the SI unit and because that also our popular liquid which is water = 1 g/cm³
<u>Answer:</u>
<h2>
All the waves are pertubations that propagate (transport) energy.</h2><h2>
</h2>
Nevertheless, they have some differences:
1. Light waves are<u> electromagnetic waves</u>, while sound and water waves are <u>mechanical waves</u>, this is the first and principal difference.
2. Electromagnetic waves can<u> propagate in vacuum</u> (they do not need a medium or material), but mechanical waves obligatory need a material to propagate
3. Light waves are always <u>transversal waves</u>, this means <u>the oscillatory movement is in a direction that is perpendicular to the propagation</u>; but mechanical waves may be both: <u>longitudinal waves</u> (the oscillation occurs in the same direction as the propagation) or transversal waves.
4. Electromagnetic waves propagates at a <u>constant velocity</u> (Light velocity) while the velocity of mechanical waves will depend on the type of wave and the <u>density</u> of the medium or material.
5. <u>Mechanical waves</u> are characterized by the regular variation of a single magnitude, while <u>electromagnetic waves</u> are characterized by the variation of two magnitudes: the electric field and the magnetic field
6. <u>Water waves</u> are 2-dimensional waves, while the <u>light and the sound</u> are tridimensional spherical waves
7. Light waves <u>transports energy in the form of </u><u>radiation</u>, while mechanical waves t<u>ransport energy with </u><u>material</u>
Answer:
Explanation:
BMI= weight/(height × height) ; weight in kilogram and height in metter
= 58kg / (1.61m × 1.61m )
= (58/ 2.5921) kg/
= 22.375 kg/
≈ 22.4 kg/
Floating. When you have no gravity you have nothing to be pushing you down to the floor so that would be an example of no gravity pushing on you.
Answer:
(a) 
(b) neither increasing or decreasing
(c) opposite to the flow of charge carriers
Explanation:
The current through an inductor of inductance L is given by:
(1)
(a) The induced emf is given by the following formula
(2)
You derivative the expression (1) in the expression (2):

(b) At t=0 the current is zero
(c) At t = 0 the emf is:

w, L and Imax have positive values, then the emf is negative. Hence, the induced emf is opposite to the flow of the charge carriers.
(d) read the text carefully