Answer:
Tough outer shell
Explanation:
Three types of space suits based on their purpose are IVA (Intravehicular activity), EVA (extravehicular activity), and IEVA (intra/extravehicular activity)
Space suits have an outer layer known as the Integrated Thermal Micrometeoroid Garment also known as the TMG or ITMG
The functions of the TMG includes the provision of an insulation medium to the wearer of the suit thereby preventing loss of heat and keeping the wearer warm, protect the wearer from solar radiation which are harmful as well as from Micrometeoroid and debris orbiting in space known as MMOD
The outermost layer of the EMU TMG suits is white Ortho-Fabric that consists of Nomex, Kevlar and Gore-Tex, making it fire resistant, very strong and very tough, and water proof as well as breathable.
False, in converting between units, it is never necessary to use more than one conversion factor.
Answer:
10.6 g CO₂
Explanation:
You have not been given a limiting reagent. Therefore, to find the maximum amount of CO₂, you need to convert the masses of both reactants to CO₂. The smaller amount of CO₂ produced will be the accurate amount. This is because that amount is all the corresponding reactant can produce before it runs out.
To find the mass of CO₂, you need to (1) convert grams C₂H₂/O₂ to moles (via molar mass), then (2) convert moles C₂H₂/O₂ to moles CO₂ (via mole-to-mole ratio from reaction coefficients), and then (3) convert moles CO₂ to grams (via molar mass). *I had to guess the chemical reaction because the reaction coefficients are necessary in calculating the mass of CO₂.*
C₂H₂ + O₂ ----> 2 CO₂ + H₂
9.31 g C₂H₂ 1 mole 2 moles CO₂ 44.0095 g
------------------ x ------------------- x ---------------------- x ------------------- =
26.0373 g 1 mole C₂H₂ 1 mole
= 31.5 g CO₂
3.8 g O₂ 1 mole 2 moles CO₂ 44.0095 g
------------- x -------------------- x ---------------------- x -------------------- =
31.9988 g 1 mole O₂ 1 mole
= 10.6 g CO₂
10.6 g CO₂ is the maximum amount of CO₂ that can be produced. In other words, the entire 3.8 g O₂ will be used up in the reaction before all of the 9.31 g C₂H₂ will be used.