Answer:
pH = 4.09
Explanation:
molarity of oxalic acid in the solution
= 0.1 x 25 / (25 + 35)
= 0.0417 M
molarity of NaOH in the solution
= 0.1 x 35 / (25 +35)
= 0.0583 M
H2C2O4 + NaOH -------------------> NaHC2O4 + H2O
0.0417 0.0583 0 0
0 0.0166 0.0417
now second acid -base titration
NaHC2O4 + NaOH -------------------> Na2C2O4 + H2O
0.0417 0.0166 0 0
0.0251 0 0.0166 ---
now
pH = pKa2 + log [Na2C2O4 / NaHC2O4]
pH = 4.27 + log (0.0166 / 0.0251)
pH = 4.09
Answer:
1223.38 mmHg
Explanation:
Using ideal gas equation as:

where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 
Also,
Moles = mass (m) / Molar mass (M)
Density (d) = Mass (m) / Volume (V)
So, the ideal gas equation can be written as:

Given that:-
d = 1.80 g/L
Temperature = 32 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T = (32 + 273.15) K = 305.15 K
Molar mass of nitrogen gas = 28 g/mol
Applying the equation as:
P × 28 g/mol = 1.80 g/L × 62.3637 L.mmHg/K.mol × 305.15 K
⇒P = 1223.38 mmHg
<u>1223.38 mmHg must be the pressure of the nitrogen gas.</u>
Use Charles' Law: V1/T1 = V2/T2. We assume the pressure and mass of the helium is constant. The units for temperature must be in Kelvin to use this equation (x °C = x + 273.15 K).
We want to solve for the new volume after the temperature is increased from 25 °C (298.15 K) to 55 °C (328.15 K). Since the volume and temperature of a gas at a constant pressure are directly proportional to each other, we should expect the new volume of the balloon to be greater than the initial 45 L.
Rearranging Charles' Law to solve for V2, we get V2 = V1T2/T1.
(45 L)(328.15 K)/(298.15 K) = 49.5 ≈ 50 L (if we're considering sig figs).
The biological compounds that are nonpolar and insoluble in water are lipids. It is a group of molecules that are naturally occurring which includes sterols, waxes, fats, fat-soluble vitamins and the like. These molecules are nonpolar molecules so basically the cannot be dissolved in a polar solvent like water.
Answer:
Option C.
2 Mg (s) + O₂(g) → 2MgO (s)
Explanation:
Two moles of magnesium solid react with one mol of oxygen gas to
form two moles of magnesium-oxide solid
2 Mg (s) + O₂(g) → 2MgO (s)
That's the reaction for the magnessium oxide's formation.
Be careful cause we do not say molecules, they are moles.
The stoichiometry indicates the number of moles that react and the moles which are produced.
It is a redox reaction, because the magnessium is oxidized and the oxygen is reduced. Both elements, changed the oxidation states.