Assuming the question marks are minus signs
to find max, take derivitive and test 0's and endpoints
take derivitive
f'(x)=18x²-18x-108
it equal 0 at x=-2 and 3
if we make a sign chart to find the change of signs
the sign changes from (+) to (-) at x=-2 and from (-) to (+) at x=3
so a reletive max at x=-2 and a reletive min at x=3
test entpoints
f(-3)=83
f(-2)=134
f(3)=-241
f(4)=-190
the min is at x=3 and max is at x=-2
My winter plan is going to out and doing enjoy lots.and I will go with my friends and do enjoy .
Answer:
6√3 ±3 ≈ {7.392, 13.392}
Step-by-step explanation:
The length of AB is the long side of a right triangle with hypotenuse CD and short side (AC -BD). The desired radius values will be half the length of EF, with AE added or subtracted.
__
<h3>length of AB</h3>
Radii AC and BD are perpendicular to the points of tangency at A and B. They differ in length by AC -BD = 12 -9 = 3 units.
A right triangle can be drawn as in the attached figure, where it is shaded and labeled with vertices A, B, C. Its long leg (AB in the attachment) is the long leg of the right triangle with hypotenuse 21 and short leg 3. The length of that leg is found from the Pythagorean theorem to be ...
AB = √(21² -3²) = √432 = 12√3
<h3>tangent circle radii</h3>
This is the same as the distance EF. Half this length, 6√3, is the distance from the midpoint of EF to E or F. The radii of the tangent circles to circles E and F will be (EF/2 ±3). Those values are ...
6√3 ±3 ≈ {7.392, 13.392}
Answer:
C
Step-by-step explanation:
In D, the x value repeats