Answer:
I'm pretty sure the answer is A.
Answer:
The work is in the explanation.
Step-by-step explanation:
The sine addition identity is:
.
The sine difference identity is:
.
The cosine addition identity is:
.
The cosine difference identity is:
.
We need to find a way to put some or all of these together to get:
.
So I do notice on the right hand side the
and the
.
Let's start there then.
There is a plus sign in between them so let's add those together:

![=[\sin(a+b)]+[\sin(a-b)]](https://tex.z-dn.net/?f=%3D%5B%5Csin%28a%2Bb%29%5D%2B%5B%5Csin%28a-b%29%5D)
![=[\sin(a)\cos(b)+\cos(a)\sin(b)]+[\sin(a)\cos(b)-\cos(a)\sin(b)]](https://tex.z-dn.net/?f=%3D%5B%5Csin%28a%29%5Ccos%28b%29%2B%5Ccos%28a%29%5Csin%28b%29%5D%2B%5B%5Csin%28a%29%5Ccos%28b%29-%5Ccos%28a%29%5Csin%28b%29%5D)
There are two pairs of like terms. I will gather them together so you can see it more clearly:
![=[\sin(a)\cos(b)+\sin(a)\cos(b)]+[\cos(a)\sin(b)-\cos(a)\sin(b)]](https://tex.z-dn.net/?f=%3D%5B%5Csin%28a%29%5Ccos%28b%29%2B%5Csin%28a%29%5Ccos%28b%29%5D%2B%5B%5Ccos%28a%29%5Csin%28b%29-%5Ccos%28a%29%5Csin%28b%29%5D)


So this implies:

Divide both sides by 2:

By the symmetric property we can write:

Two angles are said to be complementary, if the sum of the two angles is 90 degrees.
Given that the measure of angle SWT is 50 degrees, thus, the measure of the complementary angles will be 90 - 50 = 40 degrees.
From the diagram, the measure of angle USP is 40 degrees, hence it is a complement of angle SWT.
Recall that the angle on a straight line is equal to 180 degrees, thus the sum of the measures of angles USP, WST and TSV is 180 degrees.
i.e. mUSP + mWST + mTSV = 180 degrees
40 + 100 + mTSV = 180
mTSV = 180 - 140 = 40 degrees.
Hence angle TSV is complementary to angle SWT.
Therefore, the complementary angles to angle SWT are angle USP and angle TSV.
Answer:
About 29
Step-by-step explanation:
575 cans of food / 20 days = About 28.75 cans a day, rounded to 29.