Answer:
The height above sea level at <em>B</em> is approximately 1,604.25 m
Step-by-step explanation:
The given length of the mountain railway, AB = 864 m
The angle at which the railway rises to the horizontal, θ = 120°
The elevation of the train above sea level at <em>A</em>, h₁ = 856 m
The height above sea level of the train when it reaches <em>B</em>, h₂, is found as follows;
Change in height across the railway, Δh = AB × sin(θ)
∴ Δh = 864 m × sin(120°) ≈ 748.25 m
Δh = h₂ - h₁
h₂ = Δh + h₁
∴ h₂ ≈ 856 m + 748.25 m = 1,604.25 m
The height above sea level of the train when it reaches <em>B</em> ≈ 1,604.25 m
The equation that represents this hanger is: 4w=25
The weight of one circle is: 6.25
Answer:
The ball will be 84 feet above the ground 1.125 seconds and 4.5 seconds after launch.
Step-by-step explanation:
Statement is incorrect. Correct form is presented below:
<em>The height </em>
<em> of an ball that is thrown straight upward from an initial position 3 feet off the ground with initial velocity of 90 feet per second is given by equation </em>
<em>, where </em>
<em> is time in seconds. After how many seconds will the ball be 84 feet above the ground. </em>
We equalize the kinematic formula to 84 feet and solve the resulting second-order polynomial by Quadratic Formula to determine the instants associated with such height:

(1)
By Quadratic Formula:

,
The ball will be 84 feet above the ground 1.125 seconds and 4.5 seconds after launch.
Answer: 18
<u>Do Keep Change Flip (KCF)</u>
Keep: 9/2
Change: ÷ into ×
Flip: 1/4 into 4/1
Your new problem should be 9/2×4/1
<u>Multiply</u>
9/2×4/1=36/2
36/2=18
Final Answer: 18
y = 3p+85, because they are vertical angles.
x = 2p ‐ 10, because they are vertical angles too.