Split up the interval [0, 2] into <em>n</em> equally spaced subintervals:
![\left[0,\dfrac2n\right],\left[\dfrac2n,\dfrac4n\right],\left[\dfrac4n,\dfrac6n\right],\ldots,\left[\dfrac{2(n-1)}n,2\right]](https://tex.z-dn.net/?f=%5Cleft%5B0%2C%5Cdfrac2n%5Cright%5D%2C%5Cleft%5B%5Cdfrac2n%2C%5Cdfrac4n%5Cright%5D%2C%5Cleft%5B%5Cdfrac4n%2C%5Cdfrac6n%5Cright%5D%2C%5Cldots%2C%5Cleft%5B%5Cdfrac%7B2%28n-1%29%7Dn%2C2%5Cright%5D)
Let's use the right endpoints as our sampling points; they are given by the arithmetic sequence,

where
. Each interval has length
.
At these sampling points, the function takes on values of

We approximate the integral with the Riemann sum:

Recall that

so that the sum reduces to

Take the limit as <em>n</em> approaches infinity, and the Riemann sum converges to the value of the integral:

Just to check:

8 and 5 multiply to 40 but subtract to 3.
Do 5.49 / 23.4
This equals $0.23
The answer is $0.23
HD = 10.5
Step-by-step explanation:
Given BH = 3, GH = 2, BF = 10
Step 1: To find HF:
HF = BF – BH
HF = 10 – 3
HF = 7
Step 2: To find HD:
We know that if two chords intersects inside a circle, the product of the lengths of the segments of one chord equals the product of the lengths of the segments of the other chord.
⇒ GH × HD = BH × HF
⇒ 2 × HD = 3 × 7
⇒ HD = 10.5
Hence, the value of HD = 10.5.