1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dmitriy789 [7]
2 years ago
9

Find the range of f (x) = - 2x + 6 for the domain {–4, –3, –2, –1}.

Mathematics
1 answer:
luda_lava [24]2 years ago
8 0
F(x)=-2x+6
+3=-2x+6
2x=6-3
2x=3
X=3/2
You might be interested in
Which symbol will make |-8|?|-10|
Nikolay [14]

Answer:

|-8|

\text{Which property is shown by } 4+(5+6)=(4+5)+6?

\text{It is the associative property of addition}

You can group the addends in any combination and it won't change the result.

3 0
3 years ago
Someone! Please help me!
marusya05 [52]
The lines are parralel

4 0
2 years ago
Read 2 more answers
Given log630 ≈ 1.898 and log62 ≈ 0.387, log615 =
Tom [10]

\log_630\approx1.898\\\\\log_62\approx0.387\\\\\log_615=\log_6\dfrac{30}{2}=\log_630-\log_62\approx1.898-0.387=1.511\\\\Used:\\\\\log_ab-\log_ac=\log_a\dfrac{b}{c}

6 0
2 years ago
Read 2 more answers
Find the limit
Lana71 [14]

Step-by-step explanation:

<h3>Appropriate Question :-</h3>

Find the limit

\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right]

\large\underline{\sf{Solution-}}

Given expression is

\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right]

On substituting directly x = 1, we get,

\rm \: = \: \sf \dfrac{1-2}{1 - 1}-\dfrac{1}{1 - 3 + 2}

\rm \: = \sf \: \: - \infty \: - \: \infty

which is indeterminant form.

Consider again,

\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right]

can be rewritten as

\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x( {x}^{2} - 3x + 2)}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x( {x}^{2} - 2x - x + 2)}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x( x(x - 2) - 1(x - 2))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x(x - 2) \: (x - 1))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ {(x - 2)}^{2} - 1}{x(x - 2) \: (x - 1))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ (x - 2 - 1)(x - 2 + 1)}{x(x - 2) \: (x - 1))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ (x - 3)(x - 1)}{x(x - 2) \: (x - 1))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ (x - 3)}{x(x - 2)}\right]

\rm \: = \: \sf \: \dfrac{1 - 3}{1 \times (1 - 2)}

\rm \: = \: \sf \: \dfrac{ - 2}{ - 1}

\rm \: = \: \sf \boxed{2}

Hence,

\rm\implies \:\boxed{ \rm{ \:\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right] = 2 \: }}

\rule{190pt}{2pt}

7 0
2 years ago
Read 2 more answers
Help<br> I dont know the answer im not very smart
Dahasolnce [82]
The domain of G is 4 and the range of G is 9 (domain=x, range=y :))
8 0
2 years ago
Other questions:
  • I have a big math test tomorrow and a question on the review packet my teacher made for my class just doesn't make sense to me.
    15·1 answer
  • Use the grouping method to factor the polynomial below completely.<br> 3x^3 + 9x^2 + 4x + 12
    15·1 answer
  • How to find irrational number between 3 and 4
    8·2 answers
  • Identify sin Y as a fraction and as a decimal rounded to the nearest hundredth. Help please!!
    6·1 answer
  • A lamp that normally sells for $35 is on sale for
    10·1 answer
  • What’s the equation of the line with the given properties passes through (-4,-2) and (-4,5)
    14·1 answer
  • Use the table above to answer the question.
    14·1 answer
  • Over 11.2 hours, the temperature changed −2.9 degrees each hour.
    6·1 answer
  • Christina​'s time for a race was 26.3 seconds. Another​ runner's time was 8.44 seconds faster. Write and evaluate an equation wi
    5·1 answer
  • A carnival charges $3 for kids and $10 for adults. On Saturday, there were 500 visitors, and the total amount taken at the gate
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!