Answer:
a) ∫_{-6}^{6} ∫_{0}^{36} ∫_{x²}^{36} (-y) dy dz dx
b) ∫_{0}^{36} ∫_{-6}^{6} ∫_{x²}^{36} (-y) dy dx dz
c) ∫_{0}^{36} ∫_{x²}^{36} ∫_{-6}^{6} (-y) dx dy dz
e) ∫_{x²}^{36} ∫_{-6}^{6} ∫_{0}^{36} (-y) dz dx dy
Step-by-step explanation:
We write the equivalent integrals for given integral,
we get:
a) ∫_{-6}^{6} ∫_{0}^{36} ∫_{x²}^{36} (-y) dy dz dx
b) ∫_{0}^{36} ∫_{-6}^{6} ∫_{x²}^{36} (-y) dy dx dz
c) ∫_{0}^{36} ∫_{x²}^{36} ∫_{-6}^{6} (-y) dx dy dz
e) ∫_{x²}^{36} ∫_{-6}^{6} ∫_{0}^{36} (-y) dz dx dy
We changed places of integration, and changed boundaries for certain integrals.
Answer:
(1) 7 ÷ 7^3 x 7 = <u>1/7</u>
(2) 8^2 ÷ (8 - 4)^2 = <u>4</u>
<u></u>
(3) -4 + 3^3 ÷ 5 = <u>1.4</u>
<u />
<em>Hope this helps</em>
<em>-Amelia The Unknown </em>
Answer:
3053.63
Step-by-step explanation:
Use the equation for sphere volume: 
Plug the values in and get
≈ 3053.63
Note: exact value of pi used.
Answer:
B) Aluminum and steel are good conductors of electricity.
Step-by-step explanation: