Answer:C
Step-by-step explanation:
9×4=36
2×.5×4×3=12
36+12=48
Factor out the gcf first.
3(4y^2-9)
The binomial inside is a perfect square so keep factoring.
3(2y+3)(2y-3)
The pair of binomials cannot be further factored so stop there.
So I divided. 120 by 15 and got 8. I then multiplied it by 20 and got 160 bouquets
<span>-2x-3=y in standard form
=
2x + y = -3
hope it helps</span>
The equation of the hyperbola is : ![\frac{x^{2}}{48^2} - \frac{y^{2}}{14^2} = 1](https://tex.z-dn.net/?f=%20%5Cfrac%7Bx%5E%7B2%7D%7D%7B48%5E2%7D%20%20-%20%5Cfrac%7By%5E%7B2%7D%7D%7B14%5E2%7D%20%20%3D%201%20)
The center of a hyperbola is located at the origin that means at (0, 0) and one of the focus is at (-50, 0)
As both center and the focus are lying on the x-axis, so the hyperbola is a horizontal hyperbola and the standard equation of horizontal hyperbola when center is at origin:
The distance from center to focus is 'c' and here focus is at (-50,0)
So, c= 50
Now if the distance from center to the directrix line is 'd', then
![d= \frac{a^{2}}{c}](https://tex.z-dn.net/?f=%20d%3D%20%5Cfrac%7Ba%5E%7B2%7D%7D%7Bc%7D%20%20%20)
Here the directrix line is given as : x= 2304/50
Thus, ![\frac{a^{2}}{c} = \frac{2304}{50}](https://tex.z-dn.net/?f=%20%5Cfrac%7Ba%5E%7B2%7D%7D%7Bc%7D%20%20%3D%20%5Cfrac%7B2304%7D%7B50%7D%20%20)
⇒ ![\frac{a^{2}}{50} = \frac{2304}{50}](https://tex.z-dn.net/?f=%20%5Cfrac%7Ba%5E%7B2%7D%7D%7B50%7D%20%20%3D%20%5Cfrac%7B2304%7D%7B50%7D%20%20)
⇒ a² = 2304
⇒ a = √2304 = 48
For hyperbola, b² = c² - a²
⇒ b² = 50² - 48² (By plugging c=50 and a = 48)
⇒ b² = 2500 - 2304
⇒ b² = 196
⇒ b = √196 = 14
So, the equation of the hyperbola is : ![\frac{x^{2}}{48^2} - \frac{y^{2}}{14^2} = 1](https://tex.z-dn.net/?f=%20%5Cfrac%7Bx%5E%7B2%7D%7D%7B48%5E2%7D%20%20-%20%5Cfrac%7By%5E%7B2%7D%7D%7B14%5E2%7D%20%20%3D%201%20)