1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
-Dominant- [34]
2 years ago
8

Hurry im running out of time

Mathematics
1 answer:
Dimas [21]2 years ago
3 0

Answer:

it is ∠EBA and ∠DBC i think

Step-by-step explanation:

You might be interested in
If pamela has 20 of string does she have enough to make bracelets for 4 of her friends?
JulijaS [17]

How much string is needed to make one bracelet?

From the information given, she should have enough to make 4 bracelets for each of her friends if she uses 5 strings per bracelet.

5 0
3 years ago
Can someone please check my answers I WIILL GOVE BRAINLY TO FIRST PERSON THAT ANSWERS!
Rainbow [258]
The first is C. r = 4(4/9)
the second one is B. h = 130
the second one is A. k = 7

i’m so sorry, they’re all wrong
5 0
3 years ago
A (0,5)<br> B (3, 11)<br> What’s the equation
slava [35]
Y=2x+5
goes up by 2, which is the gradient and 5 is the y intercept
6 0
1 year ago
A trough of water is 20 meters in length and its ends are in the shape of an isosceles triangle whose width is 7 meters and heig
Vaselesa [24]

Answer:

a) Depth changing rate of change is 0.24m/min, When the water is 6 meters deep

b) The width of the top of the water is changing at a rate of 0.17m/min, When the water is 6 meters deep

Step-by-step explanation:

As we can see in the attachment part II, there are similar triangles, so we have the following relation between them \frac{3.5}{10} =\frac{a}{h}, then a=0.35h.

a) As we have that volume is V=\frac{1}{2} 2ahL=ahL, then V=(0.35h^{2})L, so we can derivate it \frac{dV}{dt}=2(0.35h)L\frac{dh}{dt} due to the chain rule, then we clean this expression for \frac{dh}{dt}=\frac{1}{0.7hL}\frac{dV}{dt} and compute with the knowns \frac{dh}{dt}=\frac{1}{0.7(6m)(20m)}2m^{3}/min=0.24m/min, is the depth changing rate of change when the water is 6 meters deep.

b) As the width of the top is 2a=0.7h, we can derivate it and obtain \frac{da}{dt}=0.7\frac{dh}{dt}  =0.7*0.24m/min=0.17m/min The width of the top of the water is changing, When the water is 6 meters deep at this rate

8 0
3 years ago
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
Other questions:
  • Solve the quadratic function by completing the square 2x^2+8x+14=0
    15·1 answer
  • An architectural drawing lists the scale as 1/4" = 1'. If a bedroom measures 1.5" by 2.25" on the drawing, how large is the bedr
    13·1 answer
  • 8 1/4x5 1/2what is the answer to this
    10·2 answers
  • Solve the system by linear combination. Show all your work.<br><br> 9x+5y=35<br> -2x-5y=0
    13·1 answer
  • Find the area of the shape shown below.<br> 2<br> 2<br> 4<br> Hurry and answer plz!!!!<br> 1
    13·1 answer
  • PLS HELP ME ASAP FOR 12 AND 14!! (MUST SHOW WORK!!) + LOTS OF POINTS!! *brainliest*
    15·2 answers
  • A movie theather sells 10 tickets at a time online what is the domain of this graph
    12·1 answer
  • In an SLR camera, photographers look from the viewfinder through which of the following?
    12·1 answer
  • Simplify -3 (2+4k) + 7 (2k -2)
    8·2 answers
  • Help please I need the answer
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!