Answer:
(-3, 3) and (8, -8)
Step-by-step explanation:
having the rule (x + 3, y – 5) and an input point (x,y) you just plu th iput point into the rule and you will get the output point.
With an input point (-6,8) you plug -6 in for x and 8 in for y into the rule.
(x + 3, y – 5)
(-6 + 3, 8 - 5)
(-3, 3)
Now we do the same for (5, -3) as the input
(x + 3, y – 5)
(5 + 3, -3 - 5)
(8, -8)
Change the messy words into numerals
3 times a number minus 2 equals 13
3 × n - 2 = 13
3n - 2 = 13
take 2 to the other side
3n - 2 + (2) = 13 + (2)
3n = 15
Divide by 3 on either sides to isolate n

=

3 and 3 cancels out
n = 5
check:
3 times 5 minus 2 equals 13
3 × 5 - 2 = 13
15 - 2 = 13
13 = 13
The number is 5
Answer:

Step-by-step explanation:
![24 = \frac{x}{\frac{3}{8}} \\ \\ [24][\frac{3}{8}] = \frac{72}{8} = 9 \\ \\ 9 = x](https://tex.z-dn.net/?f=24%20%3D%20%5Cfrac%7Bx%7D%7B%5Cfrac%7B3%7D%7B8%7D%7D%20%5C%5C%20%5C%5C%20%5B24%5D%5B%5Cfrac%7B3%7D%7B8%7D%5D%20%3D%20%5Cfrac%7B72%7D%7B8%7D%20%3D%209%20%5C%5C%20%5C%5C%209%20%3D%20x)
I am joyous to assist you anytime.
csc(2x) = csc(x)/(2cos(x))
1/(sin(2x)) = csc(x)/(2cos(x))
1/(2*sin(x)*cos(x)) = csc(x)/(2cos(x))
(1/sin(x))*1/(2*cos(x)) = csc(x)/(2cos(x))
csc(x)*1/(2*cos(x)) = csc(x)/(2cos(x))
csc(x)/(2*cos(x)) = csc(x)/(2cos(x))
The identity is confirmed. Notice how I only altered the left hand side (LHS) keeping the right hand side (RHS) the same each time.