let's firstly convert the mixed fractions to improper fractions and then divide.
![\bf \stackrel{mixed}{17\frac{13}{18}}\implies \cfrac{17\cdot 18 +13}{18}\implies \stackrel{improper}{\cfrac{319}{18}}~\hfill \stackrel{mixed}{2\frac{7}{9}}\implies \cfrac{2\cdot 9+7}{9}\implies \stackrel{improper}{\cfrac{25}{9}} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7Bmixed%7D%7B17%5Cfrac%7B13%7D%7B18%7D%7D%5Cimplies%20%5Ccfrac%7B17%5Ccdot%2018%20%2B13%7D%7B18%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B319%7D%7B18%7D%7D~%5Chfill%20%5Cstackrel%7Bmixed%7D%7B2%5Cfrac%7B7%7D%7B9%7D%7D%5Cimplies%20%5Ccfrac%7B2%5Ccdot%209%2B7%7D%7B9%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B25%7D%7B9%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf \cfrac{319}{18}\div \cfrac{25}{9}\implies \cfrac{319}{\underset{2}{~~\begin{matrix} 18 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}}\cdot \cfrac{\stackrel{1}{~~\begin{matrix} 9 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}}{25}\implies \cfrac{319}{50}\implies 6\frac{19}{50}](https://tex.z-dn.net/?f=%5Cbf%20%5Ccfrac%7B319%7D%7B18%7D%5Cdiv%20%5Ccfrac%7B25%7D%7B9%7D%5Cimplies%20%5Ccfrac%7B319%7D%7B%5Cunderset%7B2%7D%7B~~%5Cbegin%7Bmatrix%7D%2018%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%7D%7D%5Ccdot%20%5Ccfrac%7B%5Cstackrel%7B1%7D%7B~~%5Cbegin%7Bmatrix%7D%209%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%7D%7D%7B25%7D%5Cimplies%20%5Ccfrac%7B319%7D%7B50%7D%5Cimplies%206%5Cfrac%7B19%7D%7B50%7D)
Answer:
9a - 2b
Step-by-step explanation:
6a - 6b +3a +4b . . . . . . . we assume your _ is supposed to be -
= a(6 +3) +b(-6 +4)
= 9a -2b
Answer: cos(Θ) = (√15) / 4
Explanation:
The question states:
1) sin(Θ) = 1/4
2) 0 < Θ < π / 2
3) find cos(Θ)
This is how you solve it.
1) Use the fundamental identity (in this part I use α instead of Θ, just for facility of wirting the symbols, but they mean the same for the case).

2) From which you can find:

3) Replace sin(α) with 1/4
=>

=>

4) Given that the angle is in the first quadrant, you know that cosine is positive and the final answer is:
cos(Θ) =

.
And that is the answer.
hence, the common ratio of the given G.P. is 3 or −3.
Answer:
up 2, right 3
Step-by-step explanation:
up 2, to the right 3.