Answer:
See Explanation Below
Step-by-step explanation:
Your question isn't clear; However, I'll solve in two ways
1. Diameter = 14 cm
2. Radius = 14 cm
<em></em>
<em>When Diameter = 14 cm</em>
Given
Required
Calculate the area of the circle
First, the radius has to be solved;
Using the given formula;
The area is as follows
<em>When Radius = 14 cm</em>
Given
Required
Calculate the area of the circle
Using the given formula;
The area is as follows
Put common terms in evidence and simplify:
Answer: second option y = 2(x + 7/2)^2 + 1/2
Explanation:
1) given:
y = (x + 3)^2 + (x + 4)^2
2) expand the binomials:
y = x^2 + 6x + 9 + x^2 + 8x + 16
3) add like terms:
y = 2x^2 + 14x + 25
4) take common factor 2 of the first two terms:
y = 2 (x^2 + 7x) + 25
5) complete squares for x^2 + 7x
x^2 + 7x = [x +(7/2)x ]^2 - 49/4
6) substitue x^2 + 7x = (x + 7/2)^2 - 49/4 in the equation for y:
y = 2 [ (x + 7/2)^2 - 49/4] + 25
7) take -49/4 out of the square brackets.
y = 2 (x + 7/2)^2 - 49/2 + 25
8) add like terms:
y = 2(x + 7/2)^2 + 1/2
And that is the vertex for of the given expression.
Given:
Translation of x represented by the translation rule <-6,8>.
To find:
The correct statement for the given rule of translation.
Solution:
Rule of translation is <-6,8>.
Here, x-coordinate represents horizontal shift and y-coordinate represents vertical shift.
x-coordinate is -6, which is negative. So, the figure translated 6 units left.
y-coordinate is 8, which is positive. So, the figure translated 8 units up.
Thus, translation in words is defined as "6 units to the left and 8 units up".
Therefore, the correct option is B.
Answer:
C.) f(x) = 2x^2 + 4x + 4
Step-by-step explanation:
The equation of the parabola with vertex (h,k) is y=a(−h+x)^2+k.
Thus, the equation of the parabola is y=a(x+1)^2+2.
To find a, use the fact that the parabola passes through the point (2,20): 20=9a+2.
Solving this equation, we get that a=2.
Thus, the equation of the parabola is y=2(x+1)^2+2.
TO STANDARD FORM
= 2*(x^2+2x+1)+2
=(2x^2+4x+2)+2
= 2x^2+4x+2+2
= 2x^2+4x+4