1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olchik [2.2K]
3 years ago
14

Solve 5z(z+2)(z−1)=0.

Mathematics
1 answer:
fredd [130]3 years ago
5 0

Answer:

if you are solving for z it is:

Step-by-step explanation:

z=0,-2,1

You might be interested in
Which transformation can verify congruence by turning one triangle 90 degrees
Nezavi [6.7K]
The answer to the question of yours is A. Rotation Its not B. because the question is asking by turning one triangle 90 degrees. This would mean that B. is incorrect since its turning. It wouldn't be C. because it isn't translating 90 degrees left or right its turning. And it most definitely wouldn't be D. Dilation because the triangle isn't decreasing or enlarging. Hope this helped feel free to ask any more questions.   
6 0
3 years ago
Read 2 more answers
Claire traveled 701 miles. She drove 80 miles every day. On the last day of her trip she only drove 61 miles. Write and solve an
mina [271]

Answer:

Claire traveled for 9 days.

Step-by-step explanation:

Given:

Total Distance traveled = 701 miles

Distance traveled each day = 80 miles

Distance traveled on last day = 61 miles

We need to find the number of days Claire traveled.

Solution:

Let the number of days Claire traveled be denoted by 'd'.

Now we can say that;

Total Distance traveled is equal to sum of Distance traveled each day multiplied by number of days and Distance traveled on last day.

framing in equation form we get;

80d+61=701

Now Subtracting both side by 61 using Subtraction Property of Equality we get;

80d+61-61=701-61\\\\80d = 640

Now Dividing both side by 80 we get;

\frac{80d}{80}=\frac{640}{80}\\\\d=8

Hence Claire traveled 80 miles in 8 days and 61 miles on last day making of total <u>9 days</u> of travel.

7 0
3 years ago
A hollow metal sphere has 6 cm inner and 8cm outer radii. The surface charge densities on the exterior surface is +100 nC/m2 and
natulia [17]

Answer:

<h2>Outer Electric Field is 11250 N/C.</h2><h2>Inner Electric Field is -10000 N/C.</h2>

Step-by-step explanation:

First of all, we need to read carefully and analyse the problem. As you can see, is an electrical subject, and it's given surface charge densities and radius.

So, to calculate electric fields, we need to find the proper equation to do so: E=k\frac{q}{r^{2} }; as you can see, first we need to find the charges.

We can find all charges using the surface charge densities, because it has the next relation: p=\frac{q}{A}; which indicates that charge density is the amount of charge per area. But, there's a problem, we don't have areas, so we have to calculate them first with this relation: S=4\pi r^{2}; which gives us the surface of a sphere.

The inner surface: Si=4\pi (0.06m)^{2} = 0.04 m^{2}

The outer surface: S=4\pi (0.08m)^{2}=0.08m^{2}

Now we can calculate the charges,

Inner charge: Qi=pA=(-100\frac{nC}{m^{2} } )(0.04m^{2} )=-4nC

Outer charge: Qo=pA=100\frac{nC}{m^{2} } )(0.08m^{2} )=8nC

Then, we are able to calculate both fields:

Inner field: Ei=k\frac{Qi}{r^{2} }=9x10^{9} \frac{Nm^{2} }{C^{2} }\frac{-4x10^{-9} }{0.06m^{2} }=-10000\frac{N}{C}

Outer field:  Eo=k\frac{Qo}{r^{2} }=9x10^{9} \frac{Nm^{2} }{C^{2} }\frac{8x10^{-9} }{0.08m^{2} }=11250\frac{N}{C}

The directions that field have is opposite each other, the inner one has an inside direction, and the outer electric field has an outside direction.

3 0
3 years ago
A car travels at a speed of 55 miles per hour. How far will it travel in 5 hours?
kiruha [24]

Answer:

55*5=275

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
At a carnival, contestants are asked to keep rolling a pair of dice until they roll snake eyes. The number of rolls needed has a
Stells [14]

Answer:

The two numbers of rolls are 25.2 and 46.8.

Step-by-step explanation:

The Chebyshev's theorem states that, if X is a r.v. with mean µ and standard deviation σ, then for any positive number k, we have  

P (|X -\mu| < k\sigma) \geq  (1-\frac{1}{k^{2}})

Here

(1-\frac{1}{k^{2}})=0.75\\\\\Rightarrow \frac{1}{k^{2}}=0.25\\\\\Rightarrow k=\sqrt{\frac{1}{0.25}}\\\\\Rightarrow k=2

Then we know that,

|X - \mu| \geq k\sigma,\\\\  \Rightarrow \mu - k\sigma \leq X \leq \mu + k\sigma.

Here it is given that mean (µ) = 36 and standard deviation (σ) = 5.4.

Compute the two values between which at least 75% of the contestants lie as follows:

P(\mu - k\sigma \leq X \leq \mu + k\sigma)=0.75\\\\P(36 - 2\cdot\ 5.4 \leq X \leq 36 + 2\cdot\ 5.4)=0.75\\\\P(25.2\leq X\leq 46.8)=0.75

Thus, the two numbers of rolls are 25.2 and 46.8.

8 0
3 years ago
Other questions:
  • For the last three months Olivia saved $75, $95, and $84. What is the minimum amount she should save next month in order to save
    12·1 answer
  • A light flashes every 8 seconds. How many times would it flash in 3 minutes?
    13·1 answer
  • What is the Greatest common factor for -8X²+ 24​
    6·2 answers
  • On June 1 Charity deposited $540 into a savings account that earns an annual interest rate of 3.4%. At the end of December, the
    8·1 answer
  • In a raffle, 200 tickets are sold.
    13·2 answers
  • Can anyone please help me.
    5·2 answers
  • Which equation could be used to find the dimensions of the rectangle?
    11·1 answer
  • Solve the following equation: 6x-3= 5x-5
    5·1 answer
  • The length of a rectangle is three times the width. The perimeter of the rectangle is 40 inches. What is the area of the rectang
    8·2 answers
  • Directions: Find the product and simplify <br><br>(3m+n)(3m-n)<br><br>ty &lt;3​
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!