Let us first resolve the given numbers into prime factors.
By prime factorization,
√8 = √( <u>2 × 2</u> × 2)
√8 = 2√2
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
√98 = √( 2 × <u>7 × 7</u>)
√98 = 7√2
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
√32 = √(<u> 2 × 2 </u>×<u> 2 × 2 </u>× 2)
√32 = 2 × 2√2
√32 = 4√2
<u>Accordi</u><u>ng</u><u> to</u><u> the</u><u> question</u><u>,</u>
√8+√98+√32
2√2 + 7√2 + 4√2
√2(2 + 7 + 4)
√2(13)
13√2
<u>So</u><u>,</u><u> </u><u>we</u><u> </u><u>get</u><u> </u><u>that</u><u> </u><u>:</u>
<h3>
√8+√98+√32 → 13√2</h3>