Answer: A pressure of 0.681 atm would be exerted by 0.023 grams of oxygen
if it occupies 31.6 mL at
.
Explanation:
Given : Mass of oxygen = 0.023 g
Volume = 31.6 mL
Convert mL into L as follows.

Temperature = 
As molar mass of
is 32 g/mol. Hence, the number of moles of
are calculated as follows.

Using the ideal gas equation calculate the pressure exerted by given gas as follows.
PV = nRT
where,
P = pressure
V = volume
n = number of moles
R = gas constant = 0.0821 L atm/mol K
T = temperature
Substitute the value into above formula as follows.

Thus, we can conclude that a pressure of 0.681 atm would be exerted by 0.023 grams of oxygen
if it occupies 31.6 mL at
.
The number of moles of NH3 that could be made would be 0.5 moles
<h3>Stoichiometric reactions</h3>
From the balanced equation of the reaction:
N2 (g) + 3 H2(g) ----> 2NH3 (g)
The mole ratio of N2 to H2 is 1:3
Thus, for 0.50 moles of N2, 1.5 moles of H2 should be present. But 0.75 moles of H2 was allowed to react. Meaning that H2 is limiting in this case.
Mole ratio of H2 and NH3 = 3:2
Thus for 0.75 moles H2, the mole of NH3 that would be produced will be:
2 x 0.75/3 = 0.5 moles
More on stoichiometric calculations can be found here: brainly.com/question/8062886
I think the answer is that is lights up?
Answer: when the temperature is increased, the number of collisions per second increases.
Explanation:
the rate of collisions and the temperature is directly proportional. If the energy of the gas particles is boosted by using the temperature, the chances of the particles bumping into each other due to the high energy increases, thus increasing the number of collisions. This also increases the rate of reaction. Thus when temperature is increased the number of collisions also increases.
Q = mcΔT
m = 75 g
c = 4.25 J/gram°C
q = 2450 J
q/mc = ΔT
2450/(75 • 4.25) = 7.7°C
The temperature increased by 7.7°C.