Answer:
The molarity of acid is 3 M.
Explanation:
Given data:
Volume of H₃PO₄ = 25 mL
Volume of NaOH = 50 mL
Molarity of NaOH = 1.50 M
Molarity of H₃PO₄ = ?
Solution:
Formula:
M₁V₁ = M₂V₂
M₁ = M₂V₂ / V₁
M₁ = 1.50 M ×50 mL / 25 mL
M₁ = 75 M. mL / 25 mL
M₁ = 3 M
The molarity of acid is 3 M.
Answer:
5.82 L
Explanation:
Using Ideal gas equation for same mole of gas as
Given ,
V₁ = 2.25 L
V₂ = ?
P₁ = 2.7 atm
T₁ = 12 ºC
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T₁ = (12 + 273.15) K = 285.15 K
At STP, Pressure = 1 atm and Temperature = 273.15 K
So,
P₂ = 1 atm
T₂ = 273.15 K
Using above equation as:
Solving for V₂ , we get:
<u>V₂ = 5.82 L</u>
Answer:
Collision theory states that the rate of a chemical reaction is proportional to the number of collisions between reactant molecules. The more often reactant molecules collide, the more often they react with one another, and the faster the reaction rate.
Answer:
The answer to your question is ΔHrxn = 0 kJ
Explanation:
Process
1.- Multiply Equation 1 by 2
2C(coal) + 2H₂O ⇒ 2CO (g) + 2H₂ ΔH rxn = 259.4 kJ
2.- Sum equation 2
CO(g) + H₂O ⇒ CO₂ (g) + H₂ (g) ΔHrxn = -41 kJ
Result
2C + 3H₂O + CO ⇒ 2CO + 3H₂ + CO₂ ΔHrxn = 218.4 kJ
Simplification
2C + 3H₂O ⇒ CO + 3H₂ + CO₂
3.- Sum equation 3
CO(g) + 3H₂ (g) ⇒ CH₄ (g) + H₂O (g) ΔHrxn = -218.4 kJ
Result
2C + 3H₂O + 3H₂ + CO ⇒ CO + 3H₂ + CO₂ + CH₄ + H₂O
Simplification
2C + 2H₂O ⇒ CO₂ + CH₄ ΔHrxn = 0 kJ