<span>1. Modern devices use integrated circuits instead of vacuum tubes because integrated circuits occupy less space than vacuum tubes, are more efficient, consumes. The following explains why many modern electronic devices use integrated circuits instead of vacuum tubes:</span>
They are much smaller and more efficient than vacuum tubes.
<span>2. The equation that is used to calculate the amount of electrical energy is the following:
E=P x tE is the energy transferred in kilowatt-hours, kWhP is the power in kilowatts, kW</span>
t is time in hours, h
3. The term voltage describes the work done per unit of charge against a static electric field to move the test charge between two points. It is <span>an electromotive force and also referred to as potential difference. Voltage is expressed in volts. (V). from the given explanations the following is true:</span>
<span>It is the difference in electrical potential energy between two places in an electric field.</span>
We have 2 conditions of balance. First of all, the total forces have to have a net sum of 0 since the bridge is balancing. Hence, if we denote by F1 the force of the first pole, F2 the power of the second pole (the one closer to the car), W the weight of the bridge and w the weight of the car, we have that W+w=F1+F2=4.196*10^5 N.
We also have that it does not rotate. Hence, taking as origin of our frame of reference the car, we have that 5*F2+4*W=9*F2 by calculating the distances from our point of reference. Thus yields 5F2+8*10^5=9F2. When we solve the system of equations that is created above (best way here is by substitution), we get that F1=2.07*10^5 N while F2=2.126*10^5 N . Each pole takes up around half the weight but due to the car the pole closer to it has more weight to bear; nevertheless the car does not weigh a lot so the difference is small.
Answer: Hubble's Law
Explanation: Hubble's law that states that the farther away a galaxy is, the faster it is moving away from us
Answer:
79.2 m/s
Explanation:
θ = angle at which projectile is launched = 29.7 deg
a = initial speed of launch = 130 m/s
Consider the motion along the vertical direction
v₀ = initial velocity along the vertical direction = a Sinθ = 130 Sin29.7 = 64.4 m/s
y = vertical displacement = - 108 m
a = acceleration = - 9.8 m/s²
v = final speed as it strikes the ground
Using the kinematics equation
v² = v₀² + 2 a y
v² = 64.4² + 2 (-9.8) (-108)
v = 79.2 m/s
<span>g = GMe/Re^2, where Re = Radius of earth (6360km), G = 6.67x10^-11 Nm^2/kg^2, and Me = Mass of earth. On the earth's surface, g = 9.81 m/s^2, so the radius of your orbit is:
R = Re * sqrt (9.81 m/s^2 / 9.00 m/s^2) = 6640km
here, the speed of the satellite is:
v = sqrt(R*9.00m/s^2) = 7730 m/s
the time it would take the satellite to complete one full rotation is:
T = 2*pi*R/v = 5397 s * 1h/3600s = 1.50 h
Hope it help i know it's long and may be confusing but if you have any more questions regarding this topic just hmu! :)</span>