Answer:
The small balloon bouquet uses 7 balloons and the large one uses
18 balloons.
Step-by-step explanation:
Let's say that small balloon bouquets are S and large balloon bouquets are L. For the graduation party the employee assembled 6 small bouquets and 6 large bouquets, the total number of balloon used is 150. To put the sentence into an equation will be:
6S + 6L= 150
S+L= 25 ----> 1st equation
For Father's Day, the employee uses 6 small bouquet and 1 large bouquet, the total number of balloons used is 60. The equation will be:
6S + 1L= 60
1L= 60- 6S ----> 2nd equation
We can solve the number of small balloon bouquet by substitute the 2nd equation into 1st. The calculation will be:
S+L = 25
S+ (60-6S)= 25
-5S= 25-60
-5S= -35
S= -35/-5
S=7
Then we can find L by substitute S value to 1st or 2nd equation.
S+L=25
7+L=25
L=18
Hope this helps ;)
Answer: What graph?
Step-by-step explanation:
We know, that the <span>area of the surface generated by revolving the curve y about the x-axis is given by:

In this case a = 0, b = 15,

and:

So there will be:


![\left(\star\right)=\dfrac{2\pi}{15}\cdot\int\limits_0^{15}x^3\cdot\sqrt{1+\dfrac{x^4}{25}}\,\, dx=\dfrac{2\pi}{15}\cdot\dfrac{25}{6}\cdot\left[\left(1+\dfrac{x^4}{25}\right)^\frac{3}{2}\right]_0^{15}=\\\\\\= \dfrac{5\pi}{9}\left[\left(1+\dfrac{15^4}{25}\right)^\frac{3}{2}-\left(1+\dfrac{0^4}{25}\right)^\frac{3}{2}\right]=\dfrac{5\pi}{9}\left[2026^\frac{3}{2}-1^\frac{3}{2}\right]=\\\\\\= \boxed{\dfrac{5\Big(2026^\frac{3}{2}-1\Big)}{9}\pi}](https://tex.z-dn.net/?f=%5Cleft%28%5Cstar%5Cright%29%3D%5Cdfrac%7B2%5Cpi%7D%7B15%7D%5Ccdot%5Cint%5Climits_0%5E%7B15%7Dx%5E3%5Ccdot%5Csqrt%7B1%2B%5Cdfrac%7Bx%5E4%7D%7B25%7D%7D%5C%2C%5C%2C%20dx%3D%5Cdfrac%7B2%5Cpi%7D%7B15%7D%5Ccdot%5Cdfrac%7B25%7D%7B6%7D%5Ccdot%5Cleft%5B%5Cleft%281%2B%5Cdfrac%7Bx%5E4%7D%7B25%7D%5Cright%29%5E%5Cfrac%7B3%7D%7B2%7D%5Cright%5D_0%5E%7B15%7D%3D%5C%5C%5C%5C%5C%5C%3D%0A%5Cdfrac%7B5%5Cpi%7D%7B9%7D%5Cleft%5B%5Cleft%281%2B%5Cdfrac%7B15%5E4%7D%7B25%7D%5Cright%29%5E%5Cfrac%7B3%7D%7B2%7D-%5Cleft%281%2B%5Cdfrac%7B0%5E4%7D%7B25%7D%5Cright%29%5E%5Cfrac%7B3%7D%7B2%7D%5Cright%5D%3D%5Cdfrac%7B5%5Cpi%7D%7B9%7D%5Cleft%5B2026%5E%5Cfrac%7B3%7D%7B2%7D-1%5E%5Cfrac%7B3%7D%7B2%7D%5Cright%5D%3D%5C%5C%5C%5C%5C%5C%3D%0A%5Cboxed%7B%5Cdfrac%7B5%5CBig%282026%5E%5Cfrac%7B3%7D%7B2%7D-1%5CBig%29%7D%7B9%7D%5Cpi%7D)
Answer C.
</span>
There would be about a 14.3% chance of being able to see it
30 minutes / 210
.1428 =
14.3%
These three roots are sufficient to enable us to form a 3rd degree polynomial:
f(x) = (x+4)(x-4)(x-2) = (x^2 - 16)(x-2) = x^3 - 2x^2 - 16x + 32 (answer)