Answer:

Explanation:
As we know that when astronaut is revolving in circular path then the acceleration of the astronaut is due to centripetal acceleration
so it is given as

here we know that

also we know that

now we have


Answer:
70 m.
Explanation:
Given,
Frequency, f = 20 HZ
speed of sound, v = 1400 m/s
wavelength of the waves = ?
we know,
v = f λ



Hence, the wavelength of the wave is equal to 70 m.
Answer:
v =3.41 m/s
Explanation:
given,
mass of block 1 = 6 Kg
mass of another block 2 = 4 Kg
coefficient of friction = 0.3
Assuming 6 Kg block is attached to the spring of spring constant 350 N/m
and distance between the two block is equal to 0.5 m
using formula


U = 43.75 J
using conservation of energy
KE = U - f.d
where f is the frictional force acting



v =3.41 m/s
Answers:
a)The balloon is 68 m away of the radar station
b) The direction of the balloon is towards the radar station
Explanation:
We can solve this problem with the Doppler shift equation:
(1)
Where:
is the actual frequency of the sound wave
is the "observed" frequency
is the velocity of sound
is the velocity of the observer, which is stationary
is the velocity of the source, which is the balloon
Isolating
:
(2)
(3)
(4) This is the velocity of the balloon, note the negative sign indicates the direction of motion of the balloon: It is moving towards the radar station.
Now that we have the velocity of the balloon (hence its speed, the positive value) and the time (
) given as data, we can find the distance:
(5)
(6)
Finally:
(8) This is the distance of the balloon from the radar station